S. D. Eder
University of Bergen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by S. D. Eder.
New Journal of Physics | 2012
S. D. Eder; Thomas Reisinger; Martin M. Greve; G. Bracco; Bodil Holst
In 2008 we presented the first images obtained with a new type of matter wave microscope: NEutral Helium Atom MIcroscopy (NEMI). The main features in NEMI are the low energy of the atoms (<0.1 eV) and the fact that they are neutral. This means that fragile and/or insulating samples can be imaged without surface damage and charging effects. The ultimate resolution limit is given by the de Broglie wavelength (about 0.06 nm for a room-temperature beam), but reaching a small focus spot is still a major challenge. The best result previously was about 2 μm. The main result of this paper is the focusing of a helium atom beam to a diameter below 1 μm. A particular challenge for neutral helium microscopy is the optical element for focusing. The most promising option is to manipulate neutral helium via its de Broglie wavelength, which requires optical elements structured to nanometre precision. Here we present an investigation of the helium focusing properties of nanostructured Fresnel zone-plates. Experiments were performed by varying the illuminated area and measuring the corresponding focused spot sizes and focused beam intensities. The results were fitted to a theoretical model. There is a deviation in the efficiency of the larger zone plate, which indicates a distortion in the zone-plate pattern, but nevertheless there is good agreement between model and experiments for the focus size. This together with the demonstration of focusing to below 1 μm is an important step towards nanometre resolution neutral helium microscopy.
Review of Scientific Instruments | 2013
S. D. Eder; B. Samelin; G. Bracco; K. Ansperger; Bodil Holst
Low energy (thermal) free jet (supersonic) molecular beams are used in a range of applications from surface science and surface deposition to quantum coherence and gas kinetics experiments. A free jet molecular beam is created by a gas expansion from a high pressure reservoir through a small aperture (nozzle). The nozzle typically has a diameter of 2-20 μm. The central part of the beam is selected using a skimmer, typically up to 500 μm in diameter. Recent years have seen the introduction of highly spatially confined beam sources based on micrometer skimmers and micrometer or even sub-micrometer nozzles. Such sources have been applied, for example, in the investigation of superfluidity and in neutral helium microscopy. However, up till now no source design allowing the precise positioning of the micro-skimmer relative to the nozzle has been available. This is an important issue because the relative position of skimmer and nozzle can influence the beam properties considerably. Here we present the design and implementation of a new molecular beam source, which allows an automatized, 50 nm precision positioning of the skimmer relative to the nozzle. The source is liquid nitrogen cooled and the temperature can be controlled between 110 K and 350 K with a temperature fluctuation of less than ±0.1 K over several hours. Beam intensity measurements using a 5 μm nozzle and a skimmer 5 μm in diameter are presented for stagnation pressures po in the range 3-180 bars. A 2D beam profile scan, using a 9.5 μm skimmer and a 5 μm nozzle is presented as a further documentation of the versatility of the new design and as an illustration of the influence of the relative skimmer-nozzle position on the beam properties.
Journal of Physical Chemistry A | 2014
S. D. Eder; G. Bracco; T. Kaltenbacher; Bodil Holst
Here we present the first two-dimensional images of the virtual source of a supersonic helium expansion. The images were obtained using a free-standing Fresnel zone plate with an outermost zone width of 50 nm as imaging lens and a beam cooled to around 125 K. The nozzle diameter was 10 μm. The virtual source diameter was found to increase with stagnation pressure from 140 ± 30 μm at po = 21 bar up to 270 ± 25 μm at po = 101 bar. The experimental results are compared to a theoretical model based on the solution of the Boltzmann equation by the method of moments. The quantum mechanical cross sections used in the model have been calculated for the Lennard-Jones (LJ) and the Hurly-Moldover (HM) potentials. By using a scaling of the perpendicular temperature that parametrizes the perpendicular velocity distribution based on a continuum expansion approach, the LJ potential shows a good overall agreement with the experiment. However, at higher pressures the data points lie in between the two theoretical curves and the slope of the trend is more similar to the HM curve. Real gas corrections to enthalpy are considered but they affect the results less than the experimental errors.
Scientific Reports | 2015
S. D. Eder; Katrin Fladischer; Stephen Yeandel; Anne Lelarge; Stephen C. Parker; Elin Sondergard; Bodil Holst
Silica (SiO2) is one of the most common materials on Earth. The crystalline form α-quartz is the stable silica polymorph at ambient conditions although metastable forms exist. α-quartz is a piezoelectric material, it can be produced artificially and is widely used for example in electronics and the biosciences. Despite the many application areas, the atomic surface structures of silica polymorphs are neither well understood nor well characterized. Here we present measurements of α-quartz (0001). Helium Atom Scattering combined with Atomic Force Microscopy reveals a giant reconstruction consisting of 5.55 ± 0.07 nm wide ribbons, oriented 10.4° ± 0.8° relative to the bulk unit cell. The ribbons, with the aid of atomistic modelling, can be explained as a self-organised pattern of nano Dauphine twins (nano electrical twins).
Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena | 2017
Ranveig Flatabø; Martin M. Greve; S. D. Eder; Matthias Kalläne; Adrià Salvador Palau; Karl K. Berggren; Bodil Holst
Neutral helium microscopy is a new tool for imaging fragile and/or insulating structures as well as structures with large aspect ratios. In one configuration of the microscope, neutral helium atoms are focused as de Broglie matter waves using a Fresnel zone plate. The ultimate resolution is determined by the width of the outermost zone. Due to the low-energy beam (typically less than 0.1 eV), the neutral helium atoms do not penetrate solid materials and the Fresnel zone plate therefore has to be a free-standing structure. This creates particular fabrication challenges. The so-called Fresnel photon sieve structure is especially attractive in this context, as it consists merely of holes. Holes are easier to fabricate than the free-standing rings required in a standard Fresnel zone plate for helium microscopy, and the diameter of the outermost holes can be larger than the width of the zone that they cover. Recently, a photon sieve structure was used for the first time, as an atom sieve, to focus a beam of he...
Biomedizinische Technik | 2013
Spiros Kotopoulis; S. D. Eder; Martin M. Greve; Bodil Holst; Michiel Postema
Electron beam lithography (EBL) was used to fabricate microchannels to produce microbubbles with highly homogeneous size distributions. Using the EBL technique, microchannels can be prototyped at a fast and cost effective rate allowing for evaluation of various mi- crobubble shell materials.
Review of Scientific Instruments | 2018
R. Flatabø; S. D. Eder; A. K. Ravn; B. Samelin; Martin M. Greve; Thomas Reisinger; Bodil Holst
In neutral helium atom microscopy, a beam of atoms is scanned across a surface. Though still in its infancy, neutral helium microscopy has seen a rapid development over the last few years. The inertness and low energy of the helium atoms (less than 0.1 eV) combined with a very large depth of field and the fact that the helium atoms do not penetrate any solid material at low energies open the possibility for a non-destructive instrument that can measure topology on the nanoscale even on fragile and insulating surfaces. The resolution is determined by the beam spot size on the sample. Fast resolution change is an attractive property of a microscope because it allows different aspects of a sample to be investigated and makes it easier to identify specific features. However up till now it has not been possible to change the resolution of a helium microscope without breaking the vacuum and changing parts of the atom source. Here we present a modified source design, which allows fast, step wise resolution change. The basic design idea is to insert a moveable holder with a series of collimating apertures in front of the source, thus changing the effective source size of the beam and thereby the spot size on the surface and thus the microscope resolution. We demonstrate a design with 3 resolution steps. The number of resolution steps can easily be extended.
Physical Review Letters | 2018
Christin Büchner; S. D. Eder; Torstein Nesse; David Kuhness; Philomena Schlexer; Gianfranco Pacchioni; J. R. Manson; Markus Heyde; Bodil Holst; Hans-Joachim Freund
A chemically stable bilayers of SiO_{2} (2D silica) is a new, wide band gap 2D material. Up till now graphene has been the only 2D material where the bending rigidity has been measured. Here we present inelastic helium atom scattering data from 2D silica on Ru(0001) and extract the first bending rigidity, κ, measurements for a nonmonoatomic 2D material of definable thickness. We find a value of κ=8.8 eV±0.5 eV which is of the same order of magnitude as theoretical values in the literature for freestanding crystalline 2D silica.
Physical Review A | 2017
Torstein Nesse; S. D. Eder; Thomas Kaltenbacher; Jon Olav Grepstad; Ingve Simonsen; Bodil Holst
Surface scattering of neutral helium beams created by supersonic expansion is an established technique for measuring structural and dynamical properties of surfaces on the atomic scale. Helium beams have also been used in Fraunhofer and Fresnel diffraction experiments. Due to the short wavelength of the atom beams of typically 0.1nm or less, Fraunhofer diffraction experiments in transmission have so far been limited to grating structures with a period (pitch) of up to 200nm. However, larger periods are of interest for several applications, for example for the characterization of photonic crystal membrane structures, where the period is typically in the micron/high sub-micron range. Here we present helium atom diffraction measurements of a photonic crystal membrane structure with a two dimensional square lattice of 100x100 circular holes. The nominal period and hole radius were 490nm and 100nm respectively. To our knowledge this is the largest period that has ever been measured with helium diffraction. The helium diffraction measurements are interpreted using a model based on the helium beam characteristics. It is demonstrated how to successfully extract values from the experimental data for the average period of the grating, the hole diameter and the width of the virtual source used to model the helium beam.
Review of Scientific Instruments | 2016
A. Salvador Palau; S. D. Eder; T. Kaltenbacher; B. Samelin; G. Bracco; Bodil Holst
Time-of-flight (TOF) is a standard experimental technique for determining, among others, the speed ratio S (velocity spread) of a molecular beam. The speed ratio is a measure for the monochromaticity of the beam and an accurate determination of S is crucial for various applications, for example, for characterising chromatic aberrations in focussing experiments related to helium microscopy or for precise measurements of surface phonons and surface structures in molecular beam scattering experiments. For both of these applications, it is desirable to have as high a speed ratio as possible. Molecular beam TOF measurements are typically performed by chopping the beam using a rotating chopper with one or more slit openings. The TOF spectra are evaluated using a standard deconvolution method. However, for higher speed ratios, this method is very sensitive to errors related to the determination of the slit width and the beam diameter. The exact sensitivity depends on the beam diameter, the number of slits, the chopper radius, and the chopper rotation frequency. We present a modified method suitable for the evaluation of TOF measurements of high speed ratio beams. The modified method is based on a systematic variation of the chopper convolution parameters so that a set of independent measurements that can be fitted with an appropriate function are obtained. We show that with this modified method, it is possible to reduce the error by typically one order of magnitude compared to the standard method.