Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S Das is active.

Publication


Featured researches published by S Das.


International Journal of Radiation Oncology Biology Physics | 2001

Radiation-induced pulmonary toxicity: A dose-volume histogram analysis in 201 patients with lung cancer

Maria L. Hernando; Lawrence B. Marks; Gunilla C. Bentel; Su Min Zhou; Donna Hollis; S Das; Ming Fan; Michael T. Munley; Timothy D. Shafman; Mitchell S. Anscher; Pehr Lind

PURPOSE To relate lung dose-volume histogram-based factors to symptomatic radiation pneumonitis (RP) in patients with lung cancer undergoing 3-dimensional (3D) radiotherapy planning. METHODS AND MATERIALS Between 1991 and 1999, 318 patients with lung cancer received external beam radiotherapy (RT) with 3D planning tools at Duke University Medical Center. One hundred seventeen patients were not evaluated for RP because of <6 months of follow-up, development of progressive intrathoracic disease making scoring of pulmonary symptoms difficult, or unretrievable 3D dosimetry data. Thus, 201 patients were analyzed for RP. Univariate and multivariate analyses were performed to test the association between RP and dosimetric factors (i.e., mean lung dose, volume of lung receiving >or=30 Gy, and normal tissue complication probability derived from the Lyman and Kutcher models) and clinical factors, including tobacco use, age, sex, chemotherapy exposure, tumor site, pre-RT forced expiratory volume in 1 s, weight loss, and performance status. RESULTS Thirty-nine patients (19%) developed RP. In the univariate analysis, all dosimetric factors (i.e., mean lung dose, volume of lung receiving >or=30 Gy, and normal tissue complication probability) were associated with RP (p range 0.006-0.003). Of the clinical factors, ongoing tobacco use at the time of referral for RT was associated with fewer cases of RP (p = 0.05). These factors were also independently associated with RP according to the multivariate analysis (p = 0.001). Models predictive for RP based on dosimetric factors only, or on a combination with the influence of tobacco use, had a concordance of 64% and 68%, respectively. CONCLUSIONS Dosimetric factors were the best predictors of symptomatic RP after external beam RT for lung cancer. Multivariate models that also include clinical variables were slightly more predictive.


International Journal of Radiation Oncology Biology Physics | 2010

Radiation-Associated Liver Injury

Charlie C. Pan; Brian D. Kavanagh; Laura A. Dawson; X. Allen Li; S Das; Moyed Miften; Randall K. Ten Haken

The liver is a critically important organ that has numerous functions including the production of bile, metabolism of ingested nutrients, elimination of many waste products, glycogen storage, and plasma protein synthesis. The liver is often incidentally irradiated during radiation therapy (RT) for tumors in the upper- abdomen, right lower lung, distal esophagus, or during whole abdomen or whole body RT. This article describes the endpoints, time-course, and dose-volume effect of radiation on the liver.


International Journal of Radiation Oncology Biology Physics | 2010

RADIATION DOSE-VOLUME EFFECTS IN THE STOMACH AND SMALL BOWEL

Brian D. Kavanagh; Charlie C. Pan; Laura A. Dawson; S Das; X. Allen Li; Randall K. Ten Haken; Moyed Miften

Published data suggest that the risk of moderately severe (>or=Grade 3) radiation-induced acute small-bowel toxicity can be predicted with a threshold model whereby for a given dose level, D, if the volume receiving that dose or greater (VD) exceeds a threshold quantity, the risk of toxicity escalates. Estimates of VD depend on the means of structure segmenting (e.g., V15 = 120 cc if individual bowel loops are outlined or V45 = 195 cc if entire peritoneal potential space of bowel is outlined). A similar predictive model of acute toxicity is not available for stomach. Late small-bowel/stomach toxicity is likely related to maximum dose and/or volume threshold parameters qualitatively similar to those related to acute toxicity risk. Concurrent chemotherapy has been associated with a higher risk of acute toxicity, and a history of abdominal surgery has been associated with a higher risk of late toxicity.


Cancer Research | 2012

Overcoming limitations in nanoparticle drug delivery: triggered, intravascular release to improve drug penetration into tumors.

Ashley Manzoor; Lars H. Lindner; Chelsea D. Landon; Ji-Young Park; Andrew J. Simnick; Matthew R. Dreher; S Das; Gabi Hanna; Won Soon Park; Ashutosh Chilkoti; Gerben A. Koning; Timo L.M. ten Hagen; David Needham; Mark W. Dewhirst

Traditionally, the goal of nanoparticle-based chemotherapy has been to decrease normal tissue toxicity by improving drug specificity to tumors. The enhanced permeability and retention effect can permit passive accumulation into tumor interstitium. However, suboptimal delivery is achieved with most nanoparticles because of heterogeneities of vascular permeability, which limits nanoparticle penetration. Furthermore, slow drug release limits bioavailability. We developed a fast drug-releasing liposome triggered by local heat that has already shown substantial antitumor efficacy and is in human trials. Here, we show that thermally sensitive liposomes (Dox-TSL) release doxorubicin inside the tumor vasculature. Real-time confocal imaging of doxorubicin delivery to murine tumors in window chambers and histologic analysis of flank tumors illustrates that intravascular drug release increases free drug in the interstitial space. This increases both the time that tumor cells are exposed to maximum drug levels and the drug penetration distance, compared with free drug or traditional pegylated liposomes. These improvements in drug bioavailability establish a new paradigm in drug delivery: rapidly triggered drug release in the tumor bloodstream.


International Journal of Radiation Oncology Biology Physics | 2010

Radiation-Associated Kidney Injury

Laura A. Dawson; Brian D. Kavanagh; Arnold C. Paulino; S Das; Moyed Miften; X. Allen Li; Charlie Pan; Randall K. Ten Haken; Timothy E. Schultheiss

The kidneys are the dose-limiting organs for radiotherapy to upper abdominal cancers and during total body irradiation. The incidence of radiotherapy-associated kidney injury is likely underreported owing to its long latency and because the toxicity is often attributed to more common causes of kidney injury. The pathophysiology of radiation injury is poorly understood. Its presentation can be acute and irreversible or subtle, with a gradual progressive dysfunction over years. A variety of dose and volume parameters have been associated with renal toxicity and are reviewed to provide treatment guidelines. The available predictive models are suboptimal and require validation. Mitigation of radiation nephropathy with angiotensin-converting enzyme inhibitors and other compounds has been shown in animal models and, more recently, in patients.


Medical Physics | 2011

Knowledge-based IMRT Treatment Planning for Prostate Cancer

Vorakarn Chanyavanich; S Das; William R. Lee; Joseph Y. Lo

PURPOSE To demonstrate the feasibility of using a knowledge base of prior treatment plans to generate new prostate intensity modulated radiation therapy (IMRT) plans. Each new case would be matched against others in the knowledge base. Once the best match is identified, that clinically approved plan is used to generate the new plan. METHODS A database of 100 prostate IMRT treatment plans was assembled into an information-theoretic system. An algorithm based on mutual information was implemented to identify similar patient cases by matching 2D beams eye view projections of contours. Ten randomly selected query cases were each matched with the most similar case from the database of prior clinically approved plans. Treatment parameters from the matched case were used to develop new treatment plans. A comparison of the differences in the dose-volume histograms between the new and the original treatment plans were analyzed. RESULTS On average, the new knowledge-based plan is capable of achieving very comparable planning target volume coverage as the original plan, to within 2% as evaluated for D98, D95, and D1. Similarly, the dose to the rectum and dose to the bladder are also comparable to the original plan. For the rectum, the mean and standard deviation of the dose percentage differences for D20, D30, and D50 are 1.8% +/- 8.5%, -2.5% +/- 13.9%, and -13.9% +/- 23.6%, respectively. For the bladder, the mean and standard deviation of the dose percentage differences for D20, D30, and D50 are -5.9% +/- 10.8%, -12.2% +/- 14.6%, and -24.9% +/- 21.2%, respectively. A negative percentage difference indicates that the new plan has greater dose sparing as compared to the original plan. CONCLUSIONS The authors demonstrate a knowledge-based approach of using prior clinically approved treatment plans to generate clinically acceptable treatment plans of high quality. This semiautomated approach has the potential to improve the efficiency of the treatment planning process while ensuring that high quality plans are developed.


Medical Physics | 1999

Computational techniques for fast hyperthermia temperature optimization.

S Das; Scott T. Clegg; Thaddeus V. Samulski

Hyperthermia temperature optimization involves arriving at a temperature distribution which minimizes a stated goal function, the goal function having a biological basis in maximizing tumor cell kill while not exceeding normal tissue toxicity. This involves the computationally intensive process of multiple evaluations of the temperature goal function, requiring repeated evaluations of the power deposition and its corresponding temperature distribution. Two computational schemes are proposed to expedite the temperature optimization process: (1) temperature distribution evaluation by superpositioning precomputed distributions, and (2) using representative tissue groups (rather than every point in the domain) to evaluate the goal function. The application of these schemes is illustrated with a typical optimization problem, as applied to symmetric and asymmetric, heterogeneous models. Application of these schemes reduced the optimization time on a DEC Alpha 1000 4/266 (Alpha is a registered trademark of Digital Equipment Corporation.) from several h to min, with little difference in results. The computational schemes, though demonstrated in the context of electromagnetic hyperthermia, are generally applicable to other forms of nonionizing radiation employed in hyperthermia therapy.


Medical Physics | 2004

Feasibility of optimizing the dose distribution in lung tumors using fluorine‐18‐fluorodeoxyglucose positron emission tomography and single photon emission computed tomography guided dose prescriptions

S Das; Moyed Miften; S. Zhou; M. Bell; Michael T. Munley; Curtis S. Whiddon; Oana Craciunescu; Alan H. Baydush; Terence Z. Wong; Julian G. Rosenman; Mark W. Dewhirst; Lawrence B. Marks

The information provided by functional images may be used to guide radiotherapy planning by identifying regions that require higher radiation dose. In this work we investigate the dosimetric feasibility of delivering dose to lung tumors in proportion to the fluorine-18-fluorodeoxyglucose activity distribution from positron emission tomography (FDG-PET). The rationale for delivering dose in proportion to the tumor FDG-PET activity distribution is based on studies showing that FDG uptake is correlated to tumor cell proliferation rate, which is shown to imply that this dose delivery strategy is theoretically capable of providing the same duration of local control at all voxels in tumor. Target dose delivery was constrained by single photon emission computed tomography (SPECT) maps of normal lung perfusion, which restricted irradiation of highly perfused lung and imposed dose-function constraints. Dose-volume constraints were imposed on all other critical structures. All dose-volume/function constraints were considered to be soft, i.e., critical structure doses corresponding to volume/function constraint levels were minimized while satisfying the target prescription, thus permitting critical structure doses to minimally exceed dose constraint levels. An intensity modulation optimization methodology was developed to deliver this radiation, and applied to two lung cancer patients. Dosimetric feasibility was assessed by comparing spatially normalized dose-volume histograms from the nonuniform dose prescription (FDG-PET proportional) to those from a uniform dose prescription with equivalent tumor integral dose. In both patients, the optimization was capable of delivering the nonuniform target prescription with the same ease as the uniform target prescription, despite SPECT restrictions that effectively diverted dose from high to low perfused normal lung. In one patient, both prescriptions incurred similar critical structure dosages, below dose-volume/function limits. However, in the other patient, critical structure dosage from the nonuniform dose prescription exceeded dose-volume/function limits, and greatly exceeded that from the uniform dose prescription. Strict compliance to dose-volume/ function limits would entail reducing dose proportionality to the FDG-PET activity distribution, thereby theoretically reducing the duration of local control. Thus, even though it appears feasible to tailor lung tumor dose to the FDG-PET activity distribution, despite SPECT restrictions, strict adherence to dose-volume/function limits could compromise the effectiveness of functional image guided radiotherapy.


International Journal of Radiation Oncology Biology Physics | 2001

Beam orientation selection for intensity-modulated radiation therapy based on target equivalent uniform dose maximization

S Das; T Cullip; Gregg Tracton; Sha Chang; Lawrence B. Marks; Mitchell S. Anscher; Julian G. Rosenman

PURPOSE To develop an automated beam-orientation selection procedure for intensity-modulated radiotherapy (IMRT), and to determine if a small number of beams picked by this automated procedure can yield results comparable to a large number of manually placed orientations. METHODS AND MATERIALS The automated beam selection procedure maximizes an unconstrained objective function composed of target equivalent uniform dose (EUD) and critical structure dose-volume histogram (DVH) constraints. Beam orientations are selected from a large feasible set of directions through a series of alternating fluence optimization and orientation alteration steps, until convergence to a stable orientation set. The fluence optimization step adjusts fluences to maximize the objective function. The orientation alteration step substitutes beams in the orientation set currently under consideration with beams of the parent set in the immediate angular vicinity; the altered orientation set is deemed current if it produces a higher objective function value in the fluence optimization step. RESULTS AND CONCLUSIONS It is demonstrated, for prostate IMRT planning, that a modest number of appropriately selected beam orientations (3 or 5) can provide dose distributions as satisfactory as those produced by a large number of unselected equispaced orientations. Such selected beam orientations can reduce overall treatment time, thus making IMRT more clinically practical.


International Journal of Radiation Oncology Biology Physics | 1997

Selection of coplanar or noncoplanar beams using three-dimensional optimization based on maximum beam separation and minimized nontarget irradiation

S Das; Lawrence B. Marks

PURPOSE The design of an appropriate set of multiple fixed fields to achieve a steep dose gradient at the tumor edge, with minimal normal tissue exposure, is a very difficult problem, since a virtually infinite number of possible beam orientations exists. In practice we have selected beams in an iterative and often time-consuming process. This work proposes an optimization method, based on geometric and dose elements, to effectively arrive at a set of beam orientations. METHODS AND MATERIALS Beams are selected by minimizing a goal function including an angle function (beam separation for steep dose gradient at target edge) and a length function (related to normal tissue dose volume histogram). The relative importance of these two factors may be adjusted depending on the clinic situation. The model is flexible and can include case specific practical anatomic and physical considerations. RESULTS In extremely simple situations, the goal function yields results consistent with well-known analytical solutions. When applied to more complex clinical situations, it provides clinically reasonable solutions similar to those empirically developed by the clinician. The optimization process takes approximately 25 min on a UNIX workstation. CONCLUSION The optimization scheme provides a practical means for rapidly designing multiple field coplanar or noncoplanar treatments. It overcomes limitations in human three-dimensional visualization such as trying to visualize beam directions and keeping track of the hinge angle between beams while accounting for anatomic/machine constraints. In practice, it has been used as a starting point for physicians to make modifications, based on their clinical judgment.

Collaboration


Dive into the S Das's collaboration.

Top Co-Authors

Avatar

Lawrence B. Marks

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Zhou

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Moyed Miften

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

P Mavroidis

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge