Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. E. Paswaters is active.

Publication


Featured researches published by S. E. Paswaters.


Journal of Geophysical Research | 2000

Properties of coronal mass ejections: SOHO LASCO observations from January 1996 to June 1998

O. C. St. Cyr; Russell A. Howard; N. R. Sheeley; Simon P. Plunkett; D. J. Michels; S. E. Paswaters; M. J. Koomen; G. M. Simnett; B. J. Thompson; J. B. Gurman; R. Schwenn; David F. Webb; E. Hildner; P. L. Lamy

We report the properties of all the 841 coronal mass ejections (CMEs) observed by the Solar and Heliospheric Observatory (SOHO) Large Angle Spectroscopic Coronagraph (LASCO) C2 and C3 white-light coronagraphs from January 1996 through June 1998, and we compare those properties to previous observations by other similar instruments. Both the CME rate and the distribution of apparent locations of CMEs varied during this period as expected based on previous solar cycles. The distribution of apparent speeds and the fraction of CMEs showing acceleration were also in agreement with earlier reports. The pointing stability provided by an L-1 orbit and the use of CCD detectors have resulted in superior brightness sensitivity for LASCO over earlier coronagraphs; however, we have not detected a significant population of fainter (i.e., low mass) CMEs. The general shape of the distribution of apparent sizes for LASCO CMEs is similar to those of earlier reports, but the average (median) apparent size of 72° (50°) is significantly larger. The larger average apparent size is predominantly the result of the detection of a population of partial and complete halo CMEs, at least some of which appear to be events with a significant longitudinal component directed along the Sun-Earth line, either toward or away from the Earth. Using full disk solar images obtained by the Extreme ultraviolet Imaging Telescope (EIT) on SOHO, we found that 40 out of 92 of these events might have been directed toward the Earth, and we compared the timing of those with the Kp geomagnetic storm index in the days following the CME. Although the “false alarm” rate was high, we found that 15 out of 21 (71%) of the Kp ≥ 6 storms could be accounted for as SOHO LASCO/EIT frontside halo CMEs. If we eliminate three Kp storms that occurred following LASCO/EIT data gaps, then the possible association rate was 15 out of 18 (83%).


The Astrophysical Journal | 1997

Measurements of Flow Speeds in the Corona Between 2 and 30 R

N. R. Sheeley; Y.-M. Wang; Scott H. Hawley; Guenter E. Brueckner; K. P. Dere; Russell A. Howard; M. J. Koomen; C. M. Korendyke; D. J. Michels; S. E. Paswaters; Dennis G. Socker; O. C. St. Cyr; P. L. Lamy; Antoine Llebaria; R. Schwenn; G. M. Simnett; S. P. Plunkett; D. A. Biesecker

Time-lapse sequences of white-light images, obtained during sunspot minimum conditions in 1996 by the Large Angle Spectrometric Coronagraph on the Solar and Heliospheric Observatory, give the impression of a continuous outflow of material in the streamer belt, as if we were observing Thomson scattering from inhomogeneities in the solar wind. Pursuing this idea, we have tracked the birth and outflow of 50-100 of the most prominent moving coronal features and find that: 1. They originate about 3-4 R☉ from Sun center as radially elongated structures above the cusps of helmet streamers. Their initial sizes are about 1 R☉ in the radial direction and 0.1 R☉ in the transverse direction. 2. They move radially outward, maintaining constant angular spans and increasing their lengths in rough accord with their speeds, which typically double from 150 km s-1 near 5 R☉ to 300 km s-1 near 25 R☉. 3. Their individual speed profiles v(r) cluster around a nearly parabolic path characterized by a constant acceleration of about 4 m s-2 through most of the 30 R☉ field of view. This profile is consistent with an isothermal solar wind expansion at a temperature of about 1.1 MK and a sonic point near 5 R☉. Based on their relatively small initial sizes, low intensities, radial motions, slow but increasing speeds, and location in the streamer belt, we conclude that these moving features are passively tracing the outflow of the slow solar wind.


The Astrophysical Journal | 1997

Evidence of an Erupting Magnetic Flux Rope: LASCO Coronal Mass Ejection of 1997 April 13

James Chen; Russell A. Howard; G. E. Brueckner; R. Santoro; J. Krall; S. E. Paswaters; O. C. St. Cyr; R. Schwenn; P. L. Lamy; G. M. Simnett

A coronal mass ejection (CME) observed by LASCO exhibits evidence that its magnetic field geometry is that of a flux rope. The dynamical properties throughout the fields of view of C2 and C3 telescopes are examined. The results are compared with theoretical predictions based on a model of solar flux ropes. It is shown that the LASCO observations are consistent with a two-dimensional projection of a three-dimensional magnetic flux rope with legs that remain connected to the Sun.


Geophysical Research Letters | 1998

Geomagnetic storms caused by coronal mass ejections (CMEs): March 1996 through June 1997

G. E. Brueckner; J.-P. Delaboudinière; Russell A. Howard; S. E. Paswaters; O. C. St. Cyr; R. Schwenn; P. L. Lamy; G. M. Simnett; B. J. Thompson

(1) All but two geomagnetic storms with Kp ≥ 6 during the operating period (March 1996 through June 1997) of the Large Angle Spectroscopic Coronagraph (LASCO) experiment on the Solar and Heliospheric Observatory (SOHO) spacecraft can be traced to Coronal Mass Ejections (CMEs). (2) These geomagnetic storms are not related to high speed solar wind streams. (3) The CMEs which cause geomagnetic effects, can be classified into two categories: Halo events and toroidal CMEs. (4) The CMEs are accompanied by Coronal Shock Waves as seen in the Extreme Ultraviolet Imaging Telescope (EIT) Fe XII images. (5) Some CMEs are related to flares, others are not. (6) In many cases, the travel time between the explosion on the Sun and the maximum geomagnetic activity is about 80 hours.


The Astrophysical Journal | 1997

Origin and Evolution of Coronal Streamer Structure During the 1996 Minimum Activity Phase

Y.-M. Wang; N. R. Sheeley; Russell A. Howard; J. R. Kraemer; N. B. Rich; M. D. Andrews; G. E. Brueckner; K. P. Dere; M. J. Koomen; C. M. Korendyke; D. J. Michels; John Daniel Moses; S. E. Paswaters; Dennis G. Socker; P. L. Lamy; A. Llebaria; D. Vibert; R. Schwenn; G. M. Simnett

We employ coronal extrapolations of solar magnetograph data to interpret observations of the white-light streamer structure made with the LASCO coronagraph in 1996. The topological appearance of the streamer belt during the present minimum activity phase is well described by a model in which the Thomson-scattering electrons are concentrated around a single, warped current sheet encircling the Sun. Projection effects give rise to bright, jet-like structures or spikes whenever the current sheet is viewed edge-on; multiple spikes are seen if the current sheet is sufficiently wavy. The extreme narrowness of these features in polarized images indicates that the scattering layer is at most a few degrees wide. We model the evolution of the streamer belt from 1996 April to 1996 September and show that the effect of photospheric activity on the streamer belt topology depends not just on the strength of the erupted magnetic flux, but also on its longitudinal phase relative to the background field. Using flux transport simulations, we also demonstrate how the streamer belt would evolve during a prolonged absence of activity.


Solar Physics | 1997

First View of the Extended Green-Line Emission Corona At Solar Activity Minimum Using the Lasco-C1 Coronagraph on Soho

R. Schwenn; Bernd Inhester; S. P. Plunkett; A. Epple; B. Podlipnik; Dorothy K. Bedford; C. J. Eyles; G. M. Simnett; S. J. Tappin; Maurice V. Bout; P. L. Lamy; A. Llebaria; G. E. Brueckner; K. P. Dere; Russell A. Howard; M. J. Koomen; C. M. Korendyke; D. J. Michels; John Daniel Moses; Norman Edward Moulton; S. E. Paswaters; Dennis G. Socker; O. C. St. Cyr

The newly developed C1 coronagraph as part of the Large-Angle Spectroscopic Coronagraph (LASCO) on board the SOHO spacecraft has been operating since January 29, 1996. We present observations obtained in the first three months of operation. The green-line emission corona can be made visible throughout the instruments full field of view, i.e., from 1.1 R⊙ out to 3.2 R⊙ (measured from Sun center). Quantitative evaluations based on calibrations cannot yet be performed, but some basic signatures show up even now: (1) There are often bright and apparently closed loop systems centered at latitudes of 30° to 45° in both hemispheres. Their helmet-like extensions are bent towards the equatorial plane. Farther out, they merge into one large equatorial ‘streamer sheet’ clearly discernible out to 32 R⊙. (2) At mid latitudes a more diffuse pattern is usually visible, well separated from the high-latitude loops and with very pronounced variability. (3) All high-latitude structures remain stable on time scales of several days, and no signature of transient disruption of high-latitude streamers was observed in these early data. (4) Within the first 4 months of observation, only one single ‘fast’ feature was observed moving outward at a speed of 70 km s-1 close to the equator. Faster events may have escaped attention because of data gaps. (5) The centers of high-latitude loops are usually found at the positions of magnetic neutral lines in photospheric magnetograms. The large-scale streamer structure follows the magnetic pattern fairly precisely. Based on our observations we conclude that the shape and stability of the heliospheric current sheet at solar activity minimum are probably due to high-latitude streamers rather than to the near-equatorial activity belt.


Solar Physics | 1997

The Relationship of Green-Line Transients to White-Light Coronal Mass Ejections

S. P. Plunkett; G. E. Brueckner; K. P. Dere; Russell A. Howard; M. J. Koomen; C. M. Korendyke; D. J. Michels; John Daniel Moses; Norman Edward Moulton; S. E. Paswaters; O. C. St. Cyr; Dennis G. Socker; G. M. Simnett; Dorothy K. Bedford; D. A. Biesecker; C. J. Eyles; S. J. Tappin; R. Schwenn; P. L. Lamy; Antoine Llebaria

We report observations by the Large Angle Spectrometric Coronagraph (LASCO) on the SOHO spacecraft of three coronal green-line transients that could be clearly associated with coronal mass ejections (CMEs) detected in Thomson-scattered white light. Two of these events, with speeds >25 km s-1, may be classified as ‘whip-lite’ transients. They are associated with the core of the white-light CMEs, identified with erupting prominence material, rather than with the leading edge of the CMEs. The third green-line transient has a markedly different appearance and is more gradual than the other two, with a projected outward speed < 10 km s-1 . This event corresponds to the leading edge of a’ streamer blowout’ type of CME. A dark void is left behind in the emission-line corona following each of the fast eruptions. Both fast emission-line transients start off as a loop structure rising up from close to the solar surface. We suggest that the driving mechanism for these events may be the emergence of new bipolar magnetic regions on the surface of the Sun, which destabilize the ambient corona and cause an eruption. The possible relationship of these events to recent X-ray observations of CMEs is briefly discussed.


Solar Physics | 1998

Joint NANCAY RADIOHELIOGRAPH AND LASCO OBSERVATIONS OF CORONAL MASS EJECTIONS – II. The 9 July 1996 Event

M. Pick; D. Maia; A. Kerdraon; Russell A. Howard; G. E. Brueckner; D. J. Michels; S. E. Paswaters; R. Schwenn; P. L. Lamy; A. Llebaria; G. M. Simnett; L. J. Lanzerotti; H. Aurass

The development of a coronal mass ejection on 9 July 1996 has been analyzed by comparing the observations of the LASCO/SOHO coronagraphs with those of the Nancay radioheliograph. The spatial and temporal evolution of the associated radioburst is complex and involves a long-duration continuum. The analysis of the time sequence of the radio continuum reveals the existence of distinct phases associated with distinct reconnection processes and magnetic restructuring of the corona. Electrons are accelerated in association with these reconnection processes. An excellent spatial association is found between the position and extension of the radio source and the CME seen by LASCO. Furthermore, it is shown that the topology and evolution of the source of the radio continuum involve successive interactions between two systems of loops. These successive interactions lead to magnetic reconnection, then to a large scale coronal restructuring. Thus electrons of coronal origin may have access to the interplanetary medium in a large range of heliographic latitudes as revealed by the Ulysses observations.


SPIE's International Symposium on Optical Science, Engineering, and Instrumentation | 1998

Wavelet image compression aboard the LASCO/SOHO coronagraph

Russell A. Howard; S. E. Paswaters

The LASCO coronagraph consists of three CCD equipped telescopes taking images of up to 1024 X 1024 pixels in size. For approximately the last year a wavelet image compression has been in use for images from LASCO. The testing and performance of this compression will be discussed within the constraints of the spacecraft computer, hardware and telemetry. Effects of the image compression on the data taking, data analysis and reduction will be discussed.


Geophysical monograph | 2013

Observations of CMEs from SOHO/LASCO

Russell A. Howard; G. E. Brueckner; O. C. St. Cyr; D. A. Biesecker; K. P. Dere; M. J. Koomen; C. M. Korendyke; P. L. Lamy; A. Llebaria; Maurice V. Bout; D. J. Michels; John Daniel Moses; S. E. Paswaters; S. P. Plunkett; R. Schwenn; G. M. Simnett; Dennis G. Socker; S. J. Tappin

Collaboration


Dive into the S. E. Paswaters's collaboration.

Top Co-Authors

Avatar

Russell A. Howard

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. J. Michels

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

G. M. Simnett

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

C. M. Korendyke

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Dennis G. Socker

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

P. L. Lamy

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

M. J. Koomen

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

G. E. Brueckner

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

John Daniel Moses

United States Naval Research Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge