Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Eisebitt is active.

Publication


Featured researches published by S. Eisebitt.


Nature | 2004

Lensless imaging of magnetic nanostructures by X-ray spectro-holography

S. Eisebitt; Jan Lüning; W. F. Schlotter; M. Lörgen; O. Hellwig; W. Eberhardt; J. Stöhr

Our knowledge of the structure of matter is largely based on X-ray diffraction studies of periodic structures and the successful transformation (inversion) of the diffraction patterns into real-space atomic maps. But the determination of non-periodic nanoscale structures by X-rays is much more difficult. Inversion of the measured diffuse X-ray intensity patterns suffers from the intrinsic loss of phase information, and direct imaging methods are limited in resolution by the available X-ray optics. Here we demonstrate a versatile technique for imaging nanostructures, based on the use of resonantly tuned soft X-rays for scattering contrast and the direct Fourier inversion of a holographically formed interference pattern. Our implementation places the sample behind a lithographically manufactured mask with a micrometre-sized sample aperture and a nanometre-sized hole that defines a reference beam. As an example, we have used the resonant X-ray magnetic circular dichroism effect to image the random magnetic domain structure in a Co/Pt multilayer film with a spatial resolution of 50 nm. Our technique, which is a form of Fourier transform holography, is transferable to a wide variety of specimens, appears scalable to diffraction-limited resolution, and is well suited for ultrafast single-shot imaging with coherent X-ray free-electron laser sources.


Journal of Physical Chemistry B | 2008

Cation-Specific Interactions with Carboxylate in Amino Acid and Acetate Aqueous Solutions: X-ray Absorption and ab initio Calculations

Emad F. Aziz; Niklas Ottosson; S. Eisebitt; W. Eberhardt; Barbara Jagoda-Cwiklik; Robert Vácha; Pavel Jungwirth; Bernd Winter

Relative interaction strengths between cations (X = Li (+), Na (+), K (+), NH 4 (+)) and anionic carboxylate groups of acetate and glycine in aqueous solution are determined. These model systems mimic ion pairing of biologically relevant cations with negatively charged groups at protein surfaces. With oxygen 1s X-ray absorption spectroscopy, we can distinguish between spectral contributions from H 2O and carboxylate, which allows us to probe the electronic structure changes of the atomic site of the carboxylate group being closest to the countercation. From the intensity variations of the COO (-) aq O 1s X-ray absorption peak, which quantitatively correlate with the change in the local partial density of states from the carboxylic site, interactions are found to decrease in the sequence Na (+) > Li (+) > K (+) > NH 4 (+). This ordering, as well as the observed bidental nature of the -COO (-) aq and X (+) aq interaction, is supported by combined ab initio and molecular dynamics calculations.


Applied Physics Letters | 2006

Multiple reference Fourier transform holography with soft x rays

W. F. Schlotter; R. Rick; Kaifeng Chen; Andreas Scherz; J. Stöhr; J. Lüning; S. Eisebitt; Ch. Günther; W. Eberhardt; O. Hellwig; Ian McNulty

The authors demonstrate multiple reference source Fourier transform holography with soft x rays. This technique extends the detection limit of high resolution lensless imaging by introducing spatial multiplexing to coherent x-ray scattering. In this way, image quality is improved without increasing the radiation exposure to the sample. This technique is especially relevant for recording static images of radiation sensitive samples and for studying spatial dynamics with pulsed light sources. Applying their technique in the weak illumination limit they image a nanoscale test object by detecting ∼2500 photons. The observed enhancement in the signal-to-noise ratio of the image follows the square root of the number of reference sources.


Nature Communications | 2012

ultrafast optical demagnetization manipulates nanoscale spin structure in domain walls

Bastian Pfau; S. Schaffert; L. Müller; C. Gutt; A. Al-Shemmary; Felix Büttner; Renaud Delaunay; S. Düsterer; Samuel Flewett; Robert Frömter; Jan Geilhufe; Erik Guehrs; Christian M. Günther; R. Hawaldar; M. Hille; N. Jaouen; A. Kobs; K. Li; J. Mohanty; H. Redlin; W. F. Schlotter; Daniel Stickler; Rolf Treusch; Boris Vodungbo; Mathias Kläui; Hans Peter Oepen; Jan Lüning; G. Grübel; S. Eisebitt

During ultrafast demagnetization of a magnetically ordered solid, angular momentum has to be transferred between the spins, electrons, and phonons in the system on femto- and picosecond timescales. Although the intrinsic spin-transfer mechanisms are intensely debated, additional extrinsic mechanisms arising due to nanoscale heterogeneity have only recently entered the discussion. Here we use femtosecond X-ray pulses from a free-electron laser to study thin film samples with magnetic domain patterns. We observe an infrared-pump-induced change of the spin structure within the domain walls on the sub-picosecond timescale. This domain-topography-dependent contribution connects the intrinsic demagnetization process in each domain with spin-transport processes across the domain walls, demonstrating the importance of spin-dependent electron transport between differently magnetized regions as an ultrafast demagnetization channel. This pathway exists independent from structural inhomogeneities such as chemical interfaces, and gives rise to an ultrafast spatially varying response to optical pump pulses.


New Journal of Physics | 2010

Coherent imaging of biological samples with femtosecond pulses at the free-electron laser FLASH

Adrian P. Mancuso; Th. Gorniak; Florian Staier; O. Yefanov; Ruth Barth; Christof Christophis; Bernd Reime; J. Gulden; A. Singer; Michala E. Pettit; Th. Nisius; Th. Wilhein; C. Gutt; G. Grübel; N. Guerassimova; Rolf Treusch; J. Feldhaus; S. Eisebitt; E. Weckert; Michael Grunze; Axel Rosenhahn; I. A. Vartanyants

Coherent x-ray imaging represents a new window to imaging non- crystalline, biological specimens at unprecedented resolutions. The advent of free-electron lasers (FEL) allows extremely high flux densities to be delivered to a specimen resulting in stronger scattered signal from these samples to be measured. In the best case scenario, the diffraction pattern is measured before the sample is destroyed by these intense pulses, as the processes involved in radiation damage may be substantially slower than the pulse duration. In this case, the scattered signal can be interpreted and reconstructed to yield a faithful image of the sample at a resolution beyond the conventional radiation damage limit. We employ coherent x-ray diffraction imaging (CXDI) using the free-electron


Review of Scientific Instruments | 2012

The soft x-ray instrument for materials studies at the linac coherent light source x-ray free-electron laser.

W. F. Schlotter; J. J. Turner; Michael Rowen; P. A. Heimann; Michael Holmes; O. Krupin; M. Messerschmidt; Stefan Moeller; J. Krzywinski; Regina Soufli; Mónica Fernández-Perea; N. Kelez; Sooheyong Lee; Ryan Coffee; G. Hays; M. Beye; N. Gerken; F. Sorgenfrei; Stefan P. Hau-Riege; L. Juha; J. Chalupsky; V. Hajkova; Adrian P. Mancuso; A. Singer; O. Yefanov; I. A. Vartanyants; Guido Cadenazzi; Brian Abbey; Keith A. Nugent; H. Sinn

The soft x-ray materials science instrument is the second operational beamline at the linac coherent light source x-ray free electron laser. The instrument operates with a photon energy range of 480-2000 eV and features a grating monochromator as well as bendable refocusing mirrors. A broad range of experimental stations may be installed to study diverse scientific topics such as: ultrafast chemistry, surface science, highly correlated electron systems, matter under extreme conditions, and laboratory astrophysics. Preliminary commissioning results are presented including the first soft x-ray single-shot energy spectrum from a free electron laser.


Journal of Chemical Physics | 2006

Molecular and electronic structure in NaCl electrolytes of varying concentration: Identification of spectral fingerprints

Emad F. Aziz; A. Zimina; M. Freiwald; S. Eisebitt; W. Eberhardt

Near edge x-ray absorption spectra at the Na K edge in aqueous NaCl electrolytes are presented as a function of concentration. The spectra are modeled by electronic structure calculations. We find and identify the orbital origin of two spectral fingerprints with sensitivity to the Na+-H2O distance and the Na+-Cl- distance in the electrolyte. Interionic interaction is found to be crucial for the description of the electrolytes at high concentrations.


Journal of Electron Spectroscopy and Related Phenomena | 2000

Band structure information and resonant inelastic soft X-ray scattering in broad band solids

S. Eisebitt; W. Eberhardt

Abstract We review the current status of resonant inelastic soft X-ray scattering in broad band solids. In particular, the opportunities and limitations of this technique in order to obtain band structure information are discussed and compared to the well established technique of angle resolved photoemission.


Applied Physics Letters | 2011

Origin of magnetic switching field distribution in bit patterned media based on pre-patterned substrates

Bastian Pfau; Christian M. Günther; Erik Guehrs; Thomas Hauet; H. Yang; L. Vinh; X. Xu; D. Yaney; R. Rick; S. Eisebitt; O. Hellwig

Using a combination of synchrotron radiation based magnetic imaging and high-resolution transmission electron microscopy we reveal systematic correlations between the magnetic switching field and the internal nanoscale structure of individual islands in bit patterned media fabricated by Co/Pd-multilayer deposition onto pre-patterned substrates. We find that misaligned grains at the island periphery are a common feature independent of the island switching field, while irregular island shapes and misaligned grains specifically extending into the center of an island are systematically correlated with a reduced island reversal field.


IEEE Transactions on Magnetics | 2009

A Closer Look Into Magnetism: Opportunities With Synchrotron Radiation

H. A. Dürr; Thomas Eimuller; H. J. Elmers; S. Eisebitt; M. Farle; W. Kuch; Frank Matthes; M. Martins; Hans-Christoph Mertins; Peter M. Oppeneer; Lukasz Plucinski; Claus M. Schneider; H. Wende; W. Wurth; H. Zabel

The unique properties of synchrotron radiation, such as broad energy spectrum, variable light polarization, and flexible time structure, have made it an enormously powerful tool in the study of magnetic phenomena and materials. The refinement of experimental techniques has led to many new research opportunities, keeping up with the challenges put up by modern magnetism research. In this contribution, we review some of the recent developments in the application of synchrotron radiation and particularly soft X-rays to current problems in magnetism, and we discuss future perspectives.

Collaboration


Dive into the S. Eisebitt's collaboration.

Top Co-Authors

Avatar

W. Eberhardt

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Christian M. Günther

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Felix Büttner

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

S. Schaffert

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael D. Schneider

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jan Geilhufe

Helmholtz-Zentrum Berlin

View shared research outputs
Top Co-Authors

Avatar

B. Pfau

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Erik Guehrs

Technical University of Berlin

View shared research outputs
Researchain Logo
Decentralizing Knowledge