Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Frandsen is active.

Publication


Featured researches published by S. Frandsen.


Nature | 2011

Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars

Timothy R. Bedding; Benoit Mosser; Daniel Huber; Josefina Montalban; P. G. Beck; Joergen Christensen-Dalsgaard; Yvonne P. Elsworth; Rafael Arenas Garcia; Andrea Miglio; D. Stello; T. R. White; Joris De Ridder; S. Hekker; Conny Aerts; C. Barban; K. Belkacem; Anne-Marie Broomhall; Timothy M. Brown; Derek L. Buzasi; Fabien Carrier; William J. Chaplin; Maria Pia di Mauro; Marc-Antoine Dupret; S. Frandsen; Ronald L. Gilliland; M. J. Goupil; Jon M. Jenkins; T. Kallinger; Steven D. Kawaler; Hans Kjeldsen

Red giants are evolved stars that have exhausted the supply of hydrogen in their cores and instead burn hydrogen in a surrounding shell. Once a red giant is sufficiently evolved, the helium in the core also undergoes fusion. Outstanding issues in our understanding of red giants include uncertainties in the amount of mass lost at the surface before helium ignition and the amount of internal mixing from rotation and other processes. Progress is hampered by our inability to distinguish between red giants burning helium in the core and those still only burning hydrogen in a shell. Asteroseismology offers a way forward, being a powerful tool for probing the internal structures of stars using their natural oscillation frequencies. Here we report observations of gravity-mode period spacings in red giants that permit a distinction between evolutionary stages to be made. We use high-precision photometry obtained by the Kepler spacecraft over more than a year to measure oscillations in several hundred red giants. We find many stars whose dipole modes show sequences with approximately regular period spacings. These stars fall into two clear groups, allowing us to distinguish unambiguously between hydrogen-shell-burning stars (period spacing mostly ∼50 seconds) and those that are also burning helium (period spacing ∼100 to 300 seconds).


Nature | 2012

Fast core rotation in red-giant stars as revealed by gravity-dominated mixed modes

P. G. Beck; Josefina Montalban; T. Kallinger; Joris De Ridder; Conny Aerts; R. A. García; S. Hekker; Marc-Antoine Dupret; Benoit Mosser; P. Eggenberger; D. Stello; Y. Elsworth; S. Frandsen; Fabien Carrier; M. Hillen; M. Gruberbauer; Joergen Christensen-Dalsgaard; A. Miglio; M. Valentini; Timothy R. Bedding; Hans Kjeldsen; Forrest R. Girouard; Jennifer R. Hall; Khadeejah A. Ibrahim

When the core hydrogen is exhausted during stellar evolution, the central region of a star contracts and the outer envelope expands and cools, giving rise to a red giant. Convection takes place over much of the star’s radius. Conservation of angular momentum requires that the cores of these stars rotate faster than their envelopes; indirect evidence supports this. Information about the angular-momentum distribution is inaccessible to direct observations, but it can be extracted from the effect of rotation on oscillation modes that probe the stellar interior. Here we report an increasing rotation rate from the surface of the star to the stellar core in the interiors of red giants, obtained using the rotational frequency splitting of recently detected ‘mixed modes’. By comparison with theoretical stellar models, we conclude that the core must rotate at least ten times faster than the surface. This observational result confirms the theoretical prediction of a steep gradient in the rotation profile towards the deep stellar interior.


Astronomy and Astrophysics | 2010

Asteroseismology of red giants from the first four months of Kepler data: Fundamental stellar parameters

T. Kallinger; B. Mosser; S. Hekker; D. Huber; D. Stello; S. Mathur; Sarbani Basu; Timothy R. Bedding; W. J. Chaplin; J. De Ridder; Y. Elsworth; S. Frandsen; R. A. García; M. Gruberbauer; Jaymie M. Matthews; William J. Borucki; H. Bruntt; J. Christensen-Dalsgaard; R. L. Gilliland; Hans Kjeldsen; David G. Koch

Context. Clear power excess in a frequency range typical for solar-type oscillations in red giants has been detected in more than 1000 stars, which have been observed during the first 138 days of the science operation of the NASA Kepler satellite. This sample includes stars in a wide mass and radius range with spectral types G and K, extending in luminosity from the bottom of the giant branch up to high-luminous red giants, including the red bump and clump. The high-precision asteroseismic observations with Kepler provide a perfect source for testing stellar structure and evolutionary models, as well as investigating the stellar population in our Galaxy. Aims. We aim to extract accurate seismic parameters from the Kepler time series and use them to infer asteroseismic fundamental parameters from scaling relations and a comparison with red-giant models. Methods. We fit a global model to the observed power density spectra, which allows us to accurately estimate the granulation background signal and the global oscillation parameters, such as the frequency of maximum oscillation power. We find regular patterns of radial and non-radial oscillation modes and use a new technique to automatically identify the mode degree and the characteristic frequency separations between consecutive modes of the same spherical degree. In most cases, we can also measure the small separation between l = 0, 1, and 2 modes. Subsequently, the seismic parameters are used to estimate stellar masses and radii and to place the stars in an H-R diagram by using an extensive grid of stellar models that covers a wide parameter range. Using Bayesian techniques throughout our entire analysis allows us to determine reliable uncertainties for all parameters. Results. We provide accurate seismic parameters and their uncertainties for a large sample of red giants and determine their astero


The Astrophysical Journal | 2010

A PRECISE ASTEROSEISMIC AGE AND RADIUS FOR THE EVOLVED SUN-LIKE STAR KIC 11026764

T. S. Metcalfe; M. J. P. F. G. Monteiro; M. J. Thompson; J. Molenda-Żakowicz; T. Appourchaux; W. J. Chaplin; G. Doğan; P. Eggenberger; Timothy R. Bedding; H. Bruntt; O. L. Creevey; P.-O. Quirion; D. Stello; Alfio Bonanno; V. Silva Aguirre; Sarbani Basu; Lisa Esch; Ning Gai; M. Di Mauro; Alexander G. Kosovichev; Irina N. Kitiashvili; J. C. Suárez; Andrés Moya; L. Piau; R. A. García; J. P. Marques; Antonio Frasca; K. Biazzo; S. G. Sousa; S. Dreizler

The primary science goal of the Kepler Mission is to provide a census of exoplanets in the solar neighborhood, including the identification and characterization of habitable Earth-like planets. The asteroseismic capabilities of the mission are being used to determine precise radii and ages for the target stars from their solar-like oscillations. Chaplin et al. published observations of three bright G-type stars, which were monitored during the first 33.5 days of science operations. One of these stars, the subgiant KIC 11026764, exhibits a characteristic pattern of oscillation frequencies suggesting that it has evolved significantly. We have derived asteroseismic estimates of the properties of KIC 11026764 from Kepler photometry combined with ground-based spectroscopic data. We present the results of detailed modeling for this star, employing a variety of independent codes and analyses that attempt to match the asteroseismic and spectroscopic constraints simultaneously. We determine both the radius and the age of KIC 11026764 with a precision near 1%, and an accuracy near 2% for the radius and 15% for the age. Continued observations of this star promise to reveal additional oscillation frequencies that will further improve the determination of its fundamental properties.


Astronomy and Astrophysics | 2002

Detection of solar - like oscillations in the G7 giant star xi Hya

S. Frandsen; Fabien Carrier; Conny Aerts; D. Stello; Thomas Maas; M Burnet; H. Bruntt; T. C. Teixeira; D. W. O. de Medeiros; F. Bouchy; Hans Kjeldsen; Frank Peter Pijpers; J. Christensen-Dalsgaard

We report the firm discovery of solar-like oscillations in a giant star. We monitored the star ξ Hya (G7III) continu- ously during one month with the CORALIE spectrograph attached to the 1.2 m Swiss Euler telescope. The 433 high-precision radial-velocity measurements clearly reveal multiple oscillation frequencies in the range 50-130 µHz, corresponding to periods between 2.0 and 5.5 hours. The amplitudes of the strongest modes are slightly smaller than 2ms −1 . Current model calculations


Astronomy and Astrophysics | 2012

Age and helium content of the open cluster NGC 6791 from multiple eclipsing binary members - II. Age dependencies and new insights

K. Brogaard; Don A. Vandenberg; H. Bruntt; F. Grundahl; S. Frandsen; L. R. Bedin; Antonino P. Milone; Aaron Dotter; Gregory A. Feiden; Peter B. Stetson; Eric L. Sandquist; A. Miglio; D. Stello; J. Jessen-Hansen

Context. Models of stellar structure and evolution can be constrained by measuring accurate parameters of detached eclipsing binaries in open clusters. Multiple binary stars provide the means to determine helium abundances in these old stellar systems, and in turn, to improve estimates of their age. Aims. In the first paper of this series, we demonstrated how measurements of multiple eclipsing binaries in the old open cluster NGC6791 sets tighter constraints on the properties of stellar models than has previously been possible, thereby potentially improving both the accuracy and precision of the cluster age. Here we add additional constraints and perform an extensive model comparison to determine the best estimates of the cluster age and helium content, employing as many observational constraints as possible. Methods. We improve our photometry and correct empirically for differential reddening effects. We then perform an extensive comparison of the new colour-magnitude diagrams (CMDs) and eclipsing binary measurements to Victoria and DSEP isochrones in order to estimate cluster parameters. We also reanalyse a spectrum of the star 2‐17 to improve [Fe/H] constraints. Results. Wefind abest estimateof theage of ∼8.3Gyr for NGC6791 whiledemonstrating that remaining age uncertainty is dominated by uncertainties in the CNO abundances. The helium mass fraction is well constrained at Y = 0.30 ± 0.01 resulting in ΔY/ΔZ ∼1.4 assuming that such a relation exists. During the analysis we firmly identify blue straggler stars, including the star 2‐17, and find indications for the presence of their evolved counterparts. Our analysis supports the RGB mass-loss found from asteroseismology and we determine precisely the absolute mass of stars on the lower RGB, MRGB = 1.15 ± 0.02 M� . This will be an important consistency check for the detailed asteroseismology of cluster stars. Conclusions. Using multiple, detached eclipsing binaries for determining stellar cluster ages, it is now possible to constrain parameters of stellar models, notably the helium content, which were previously out of reach. By observing a suitable number of detached eclipsing binaries in several open clusters, it will be possible to calibrate the age-scale and the helium enrichment parameter ΔY/ΔZ, and provide firm constraints that stellar models must reproduce.


The Astrophysical Journal | 2010

Asteroseismic Investigation of Known Planet Hosts in the Kepler Field

J. Christensen-Dalsgaard; Hans Kjeldsen; Timothy M. Brown; R. L. Gilliland; T. Arentoft; S. Frandsen; P.-O. Quirion; William J. Borucki; David G. Koch; J. M. Jenkins

In addition to its great potential for characterizing extra-solar planetary systems, the Kepler Mission is providing unique data on stellar oscillations. A key aspect of Kepler asteroseismology is the application to solar-like oscillations of main-sequence stars. As an example, we here consider an initial analysis of data for three stars in the Kepler field for which planetary transits were known from ground-based observations. For one of these, HAT-P-7, we obtain a detailed frequency spectrum and hence strong constraints on the stellar properties. The remaining two stars show definite evidence for solar-like oscillations, yielding a preliminary estimate of their mean densities.


The Astronomical Journal | 1995

Solarlike oscillations in eta Boo

Hans Kjeldsen; Timothy R. Bedding; Michael Viskum; S. Frandsen

We have observed evidence for


The Astrophysical Journal | 2008

A MULTISITE CAMPAIGN TO MEASURE SOLAR-LIKE OSCILLATIONS IN PROCYON. I. OBSERVATIONS, DATA REDUCTION, AND SLOW VARIATIONS

T. Arentoft; Hans Kjeldsen; Timothy R. Bedding; Michael Bazot; Joergen Christensen-Dalsgaard; T. H. Dall; C. Karoff; Fabien Carrier; P. Eggenberger; Danuta Sosnowska; Robert A. Wittenmyer; Michael Endl; T. S. Metcalfe; S. Hekker; Sabine Reffert; R. Paul Butler; H. Bruntt; L. L. Kiss; S. J. O'Toole; Eiji Kambe; Hiroyasu Ando; Hideyuki Izumiura; Bun’ei Sato; M. Hartmann; A. Hatzes; F. Bouchy; Benoit Mosser; T. Appourchaux; C. Barban; G. Berthomieu

p


Astronomy and Astrophysics | 2009

Extensive optical and near-infrared observations of the nearby, narrow-lined type Ic SN 2007gr: days 5 to 415

David J. Hunter; S. Valenti; R. Kotak; W. P. S. Meikle; S. Taubenberger; Andrea Pastorello; Stefano Benetti; V. Stanishev; S. J. Smartt; Carrie Trundle; A. A. Arkharov; F. Bufano; E. Cappellaro; E. Di Carlo; M. Dolci; N. Elias-Rosa; S. Frandsen; J. P. U. Fynbo; Ulrich Hopp; V. M. Larionov; Peter Laursen; Paolo A. Mazzali; H. Navasardyan; C. Ries; Arno Riffeser; Luigi Rizzi; D.Y. Tsvetkov; Massimo Turatto; Silona Wilke

-mode oscillations in the G0 IV star etaBoo (V = 2.68). This represents the first clear evidence of solar-like oscillations in a star other than the Sun. We used a new technique which measures fluctuations in the temperature of the star via their effect on the equivalent widths of the Balmer lines. The observations were obtained over six nights with the 2.5 m Nordic Optical Telescope on La Palma and consist of 12684 low-dispersion spectra. In the power spectrum of the equivalent-width measurements, we find an excess of power at frequencies around 850 microHz (period 20 minutes) which consists of a regular series of peaks with a spacing of

Collaboration


Dive into the S. Frandsen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. Arentoft

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. L. Gilliland

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

L. L. Kiss

Hungarian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge