S.I. Pérez-Elvira
University of Valladolid
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by S.I. Pérez-Elvira.
Bioresource Technology | 2012
M.E. Alzate; Raúl Muñoz; F. Rogalla; F. Fdz-Polanco; S.I. Pérez-Elvira
The anaerobic digestion of three microalgae mixtures was evaluated at different substrate to inoculum (S/I) ratios (0.5, 1 and 3), biomass concentrations (3, 10 and 20gTS/kg) and pretreatments (thermal hydrolysis, ultrasound and biological treatment). An S/I ratio of 0.5 and 10gTS/kg resulted in the highest final methane productivities regardless of the microalgae tested (ranging from 188 to 395mL CH(4)/gVS(added)). The biological pretreatment supported negligible enhancements on CH(4) productivity, while the highest increase (46-62%) was achieved for the thermal hydrolysis. The optimum temperature of this pretreatment depended on the microalgae species. The ultrasound pretreatment brought about increases in CH(4) productivity ranging from 6% to 24% at 10,000kJ/kgTS, without further increases at higher energy inputs. The results here obtained confirmed the lack of correlation between the solubilization degree and the methane enhancement potential and pointed out that anaerobic digestion of algae after thermal pretreatment is a promising technology for renewable energy production.
Bioresource Technology | 2011
A. Donoso-Bravo; S.I. Pérez-Elvira; Enrique Aymerich; F. Fdz-Polanco
Laboratory and pilot-scale experiments were carried out in order to evaluate the influence of thermal pre-treatment time on waste-activated sludge properties and anaerobic biodegradability. Six experimental conditions were analyzed from 0 to 30 min of hydrolysis time. Solubilization of macromolecular compounds, changes in the main sludge properties and anaerobic biodegradability of the sewage sludge were evaluated. A similar carbohydrate solubilization degree was achieved, from 53% to 70% and 59% to 75% for lab- and pilot-scale experiments, respectively. In the case of proteins, the values of solubilization were lower in the pilot-scale experiment than in the laboratory, with 31-45% and 47-70%, respectively. Ammonia and volatile fatty acid did not undergo important changes; however the sludge dewaterability enhanced at increased pre-treatment times. All the pre-treatment conditions had a positive effect with regard to anaerobic biodegradability and by fitting experimental data with a simplified mathematical model, it was concluded that the maximum biogas production rate is more influenced by the pre-treatment time than the total biogas production.
Bioresource Technology | 2011
Katalin Sólyom; Rafael B. Mato; S.I. Pérez-Elvira; María José Cocero
In this study, microwave treatment is analyzed as a way to accelerate the hydrolysis in anaerobic digestion of municipal wastewater sludge. The influence of the absorbed energy, power and athermal microwave effect on organic matter solubilization and biogas production has been studied. In addition, a novel method that considers the absorbed energy in the microwave system is proposed, in order to obtain comparable experimental results. The absorbed energy is calculated from an energy balance. The highest solubilization was achieved using 0.54 kJ/ml at 1000 W, where an increment of 7.1% was observed in methane production, compared to the untreated sample. Using a higher energy value (0.83 kJ/ml), methane production further increased (to 15.4%), but solubilization decreased. No power influence was found when 0.54 kJ/ml was applied at 1000, 600 and 440 W. Microwave heating was compared to conventional heating in two different experimental setups, providing similar methane yields in all cases.
Water Science and Technology | 2009
S.I. Pérez-Elvira; M. Fdz-Polanco; F. I. Plaza; G. Garralón; F. Fdz-Polanco
Prior research indicates that ultrasounds can be used in batch reactors as pre-treatment before anaerobic digestion, but the specific energy required at laboratory-scale is too high. This work evaluates both the continuous ultrasound device performance (efficiency and solubilisation) and the operation of anaerobic digesters continuously fed with sonicated sludge, and presents energy balance considerations. The results of sludge solubilisation after the sonication treatment indicate that, applying identical specific energy, it is better to increase the power than the residence time. Working with secondary sludge, batch biodegradability tests show that by applying 30 kWh/m3 of sludge, it is possible to increase biogas production by 42%. Data from continuous pilot-scale anaerobic reactors (V=100 L) indicate that operating with a conventional HRT=20 d, a reactor fed with pre-treated sludge increases the volatile solids removal and the biogas production by 25 and 37% respectively. Operating with HRT=15 d, the removal efficiency is similar to the obtained with a reactor fed with non-hydrolysed sludge at HTR=20 d, although the specific biogas productivity per volume of reactor is higher for the pretreated sludge. Regarding the energy balance, although for laboratory-scale devices it is negative, full-scale suppliers state a net generation of 3-10 kW per kW of energy used.
Water Science and Technology | 2008
F. Fdz-Polanco; R. Velazquez; S.I. Pérez-Elvira; C. Casas; D. del Barrio; F. J. Cantero; M. Fdz-Polanco; P. Rodriguez; L. Panizo; J. Serrat; P. Rouge
A thermal hydrolysis pilot plant with direct steam injection heating was designed and constructed. In a first period the equipment was operated in batch to verify the effect of sludge type, pressure and temperature, residence time and solids concentration. Optimal operation conditions were reached for secondary sludge at 170 degrees C, 7 bar and 30 minutes residence time, obtaining a disintegration factor higher than 10, methane production increase by 50% and easy centrifugation In a second period the pilot plant was operated working with continuous feed, testing the efficiency by using two continuous anaerobic digester operating in the mesophilic and thermophilic range. Working at 12 days residence time, biogas production increases by 40-50%. Integrating the energy transfer it is possible to design a self-sufficient system that takes advantage of this methane increase to produce 40% more electric energy.
Electronic Journal of Biotechnology | 2008
S.I. Pérez-Elvira; Fernando Fernández-Polanco; María Fernández-Polanco; Pilar Rodríguez; Philippe Rouge
A process configuration combining thermal hydrolysis (TH) and anaerobic digestion (AD) of sludge has been studied with the objective of analysing the feasibility of the technology for full scale installations. The study has been performed through pilot scale experiments and energy integration considerations, and a scheme of the most profitable option is presented: thermal hydrolysis unit fed with 7% total solids (TS) secondary sludge, anaerobic digestion of the hydrolysed sludge together with fresh primary sludge, and a cogeneration unit to produce green electricity and provide hot steam for the thermal hydrolysis process. From a technical and practical point of view, the process scheme proposed is considered to be feasible. Based on the results of the pilot plant performance and the laboratory studies, the process has proven to operate successfully at a concentration of 7-8% TS. After the thermal hydrolysis, sludge viscosity becomes radically smaller, and this favours the digesters mixing and performance (40% more biogas can be obtained in nearly half the residence time compared to the conventional digestion). From an economic point of view, the key factors in the energy balance are: the recovery of heat from hot streams, and the concentration of sludge. The article presents the main energy integration schemes and defines the most profitable one: an energetically self-sufficient process, with a cogeneration unit. The scheme proposed has proven to need no additional energy input for the sludge hydrolysis, generates more that 1 MW green electricity (246 kW surplus with respect to the conventional process), and produces 58% less volume of Class A biowaste. The study and balances here presented set the basis for the scale-up to a demonstration plant (hydrolysis + anaerobic digestion + cogeneration unit).
Bioresource Technology | 2013
L.C. Ferreira; Andrés Donoso-Bravo; P.J. Nilsen; F. Fdz-Polanco; S.I. Pérez-Elvira
The biochemical methane potential of steam exploded wheat straw was evaluated in a pilot plant under different temperature-time combinations. The optimum was obtained for 1 min and 220 °C thermal pretreatment (3.5 severity factor), resulting in a 20% increase in methane production respect non-treated straw. For more severe treatments the biodegradability decreased due to a possible formation of inhibitory compounds. The results of the tests were modeled with a first order equation to estimate the hydrolysis constant and biodegradability extent, and the influence of temperature and time on the kinetic parameters was obtained with a response surface study. The data processing confirmed the accuracy of the model and the optimum operation conditions, and demonstrated that the biomethanization of raw and pretreated wheat straw is limited by the hydrolysis, being the individual influence of temperature and time much more important than the interaction between them.
Water Science and Technology | 2012
S.I. Pérez-Elvira; F. Fdz-Polanco
Experimental data obtained from the operation in a pilot plant are used to perform mass and energy balances to a global process combining units of thermal hydrolysis (TH) of secondary sludge, anaerobic digestion (AD) of hydrolysed secondary sludge together with fresh primary sludge, and cogeneration from biogas by using a gas engine in which the biogas produces electricity and heat from the exhaust gases. Three scenarios were compared, corresponding to the three digesters operated: C (conventional AD, 17 days residence time), B (combined TH + AD, same time), and A (TH + AD at half residence time). The biogas production of digesters B and A was 33 and 24% better, respectively when compared with C. In the case of the combined TH + AD process (scenarios A and B), the key factors in the energy balance were the recovery of heat from hot streams, and the concentration of sludge. The results of the balances showed that for 8% DS concentration of the secondary sludge tested in the pilot plant, the process can be energetically self-sufficient, but a fraction of the biogas must by-pass the gas engine to be directly burned. From an economic point of view, scenario B is more profitable in terms of green energy and higher waste removal, while scenario A reduces the digester volume required by a half. Considering a population of 100,000 inhabitants, the economic benefit is 87,600 €/yr for scenario A and 132,373 €/yr for B. This value can be increased to 223,867 €/yr by increasing the sludge concentration of the feeding to the TH unit to a minimum value that allows use of all the biogas to produce green energy. This concentration is 13% DS, which is still possible from a practical point of view. Additional benefits gained with the combined TH + AD process are the enhancement of the digesters rheology and the possibility of getting Class A biosolids. The integration study presented here set the basis for the scale-up to a demonstration plant.
Environmental Science & Technology | 2012
Jose Abelleira; S.I. Pérez-Elvira; Juan R. Portela; J. Sánchez-Oneto; Enrique Nebot
The aim of this work was to study in depth the behavior and optimization of a novel process, called advanced thermal hydrolysis (ATH), to determine its utility as a pretreatment (sludge solubilization) or postreatment (organic matter removal) for anaerobic digestion (AD) in the sludge line of wastewater treatment plants (WWTPs). ATH is based on a thermal hydrolysis (TH) process plus hydrogen peroxide (H(2)O(2)) addition and takes advantage of a peroxidation/direct steam injection synergistic effect. On the basis of the response surface methodology (RSM) and a modified Doehlert design, an empirical second-order polynomial model was developed for the total yield of: (a) disintegration degree [DD (%)] (solubilization), (b) filtration constant [F(c) (cm(2)/min)] (dewaterability), and (c) organic matter removal (%). The variables considered were operation time (t), temperature reached after initial heating (T), and oxidant coefficient (n = oxygen(supplied)/oxygen(stoichiometric)). As the model predicts, in the case of the ATH process with high levels of oxidant, it is possible to achieve an organic matter removal of up to 92%, but the conditions required are prohibitive on an industrial scale. ATH operated at optimal conditions (oxygen amount 30% of stoichiometric, 115 °C and 24 min) gave promising results as a pretreatment, with similar solubilization and markedly better dewaterability levels in comparison to those obtained with TH at 170 °C. The empirical validation of the model was satisfactory.
Bioresource Technology | 2014
L.C. Ferreira; Theo S.O. Souza; F. Fdz-Polanco; S.I. Pérez-Elvira
The assessment of the biodegradability of thermal steam-exploded pig manure was performed compared to untreated samples. The pre-treatment was performed under different combinations of temperature and time, ranging 150-180 °C and 5-60 min, and used as substrate in a series of batch biochemical methane potential (BMP) tests. Results were analyzed in terms of methane yield, kinetic parameters and severity factor. In all the pre-treatment conditions, methane yield and degradation rates increased when compared to untreated pig slurry. An ANOVA study determined that temperature was the main factor, and the optimum combination of temperature-time of pretreatment was 170 °C -30 min, doubling methane production from 159 to 329 mL CH4/gVSfed. These operation conditions correspond to a severity factor of 3.54, which was considered an upper limit for the pretreatment due to the possible formation of inhibitory compounds, hindering the process if this limit is exceeded.