S. J. Garland
University of Western Ontario
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by S. J. Garland.
The Journal of Physiology | 1991
S. J. Garland
1. Previous work has shown that the H reflex excitability of the human soleus motoneurones is reduced during fatigue and is accompanied by a corresponding decrease in electromyographic (EMG) activity during maximal voluntary contractions. These findings were consistent with the existence of a reflex whereby alpha‐motoneurones are inhibited by sensory input from the fatigued muscle. 2. To elucidate the contribution of different‐sized afferents in such reflex inhibition, compression of the sciatic nerve was used in an attempt to block large myelinated afferents prior to fatigue. 3. Fatigue of the soleus muscle was induced under ischaemic conditions by intermittent electrical stimulation at 15 Hz in ten healthy subjects. These subjects also participated in a control test in which the compression block was followed by ischaemia without fatigue. 4. Following nerve compression alone, both the mean maximal plantarflexion torque and the associated EMG for all ten subjects declined by 18.8 +/‐ 16.2% (S.D.) and 13.4 +/‐ 17.2%, respectively. 5. Following fatigue, there were five subjects in whom the large afferents remained blocked and the experimental findings were consistent with the existence of reflex inhibition during fatigue. The mean maximal plantarflexion torque decreased further by 36.2 +/‐ 7.6% from the value following the compression block compared to a decrease of 5.0 +/‐ 9.9% in the ischaemia control. The mean EMG associated with these contractions also decreased from post‐block values by 56.8 +/‐ 19.6% following fatigue and by only 6.4 +/‐ 8.0% following ischaemia alone. 6. The peripheral excitability of the neuromuscular junction and muscle fibre membrane was adequate following fatigue as evidenced by only modest changes in the M wave (muscle compound action potential). The descending motor drive was deemed sufficient because of the absence of any large interpolated twitches superimposed upon the maximal voluntary contraction in all but two subjects. 7. The declines in maximal plantarflexion torque and the associated EMG activity were very similar to those found in a previous study in which the sensory input was unaltered. The findings demonstrated that any reflex inhibition of the alpha‐motoneurone pool during fatigue was probably not mediated by large diameter afferents. Rather, it is suggested that the reflex is mediated by smaller diameter afferents originating from the fatigued muscle.
The Journal of Physiology | 1990
S. J. Garland; Alan J. McComas
1. Human soleus muscles were fatigued under ischaemic conditions by intermittent stimulation at 15 Hz. When maximal voluntary plantarflexion was then attempted, the loss of torque was found to be associated with a reduction in voluntary EMG activity. 2. The decrease in EMG activity could not have been due to ‘exhaustion’ of descending motor drive in the central nervous system since fatigue had been induced by electrical stimulation of peripheral nerve fibres. Similarly, the decrease could not be explained by changes at the neuromuscular junction or muscle fibre membrane, since changes in the M wave (evoked muscle compound action potential) were relatively modest. 3. When the excitability of the soleus motoneurones was tested during fatigue, using the H (Hoffmann) reflex, it was found to be significantly reduced. Control experiments with ischaemia or electrical stimulation, but without fatigue, failed to demonstrate any significant effects on reflex excitability. 4. The findings in this study favour the concept of reflex inhibition of alpha‐motoneurones during fatigue.
The Journal of Physiology | 1988
S. J. Garland; S. Garner; Alan J. McComas
1. After ischaemic ankle dorsiflexor muscles had been fatigued by repetitive stimulation of the peroneal nerve at 15 Hz, there was a reduction in voluntary EMG activity which persisted as long as the arterial cuff remained inflated. 2. The reduction in voluntary EMG activity could not have been due to loss of excitability at the neuromuscular junctions or muscle fibre membranes since the M‐waves (muscle compound action potentials) evoked by peroneal nerve stimulation were well maintained. 3. The preceding observations were consistent with the view that the reduction in EMG activity was due to reflex inhibition of motoneurones by afferents from the fatigued muscle. 4. The absence of responses to stimuli interpolated among the voluntary activity indicated that any motor units which could not be recruited in the fatigued muscle were no longer capable of generating tension.
Experimental Brain Research | 2004
R. A. Kuchinad; Tanya D. Ivanova; S. J. Garland
Declining motor unit discharge rates and H-reflex amplitude have been observed in separate experiments during fatiguing submaximal contractions in humans. The purpose of this experiment was to investigate motor unit discharge rate, H-reflex amplitude, and twitch contractile properties concurrently during a fatiguing submaximal isometric contraction of the ankle plantarflexors. Eleven healthy subjects performed fatiguing contractions of low force (25% maximal voluntary contraction (MVC)) or high force (42–66% MVC). Hoffmann (H)-reflexes, muscle compound action potentials (M-waves), twitch contractile properties, and motor unit discharges were recorded from the soleus muscle. In the low-force fatigue task, motor unit firing rate increased gradually over time, whereas the resting H-reflex was significantly depressed at 15% of endurance time and remained quasiconstant for the rest of the task. This suggests that the processes mediating the resting H-reflex depression are relatively independent of those modulating the motor unit firing rate during a low-force fatigue task. In the high-force fatigue task, a decline in the average motor unit discharge rate was accompanied by a decrease in the resting H-reflex amplitude and a prolongation of the twitch half-relaxation time (HRT) at the completion of the fatigue task. Overall, motor unit firing rate was modulated in parallel with changes in the twitch HRT, consistent with the muscle wisdom hypothesis.
Neuroscience Letters | 2001
C.S Klein; T.D Ivanova; C.L Rice; S. J. Garland
It has been proposed that during brief voluntary contractions, twitch potentiation may sustain force output despite a decline in motor unit discharge rate. This study examined the evoked twitch force and motor unit discharge rates during submaximal voluntary contractions of the triceps brachii muscle before and after a 5 s conditioning contraction (CC) at 75% of maximal voluntary force. After the CC, twitch force potentiated ( approximately 1.3-2-fold), and the discharge rate in 33 of 35 motor units declined significantly by 1-6 Hz. The increase in twitch force was significantly correlated with the decline in discharge rate (r=-0.74). These findings suggest that the extent of the decrease in motor unit discharge rate following a CC is associated with the magnitude of twitch potentiation.
Experimental Brain Research | 2004
G. Mochizuki; Tanya D. Ivanova; S. J. Garland
The muscle activation patterns in anterior and posterior leg muscles were investigated with two types of perturbations to standing balance. Subjects stood with each foot on adjacent force platforms and performed arm flexion movements to shoulder height. Nine subjects performed ten repetitions unilaterally and bilaterally at 100, 75, 50, 25, and 12.5% of maximal acceleration as measured by an accelerometer placed on the dominant hand. Four subjects also performed the fastest movements while leaning forwards and backwards. The area and latency of the EMG activity from the quadriceps (QUAD), hamstrings (BF), soleus (SOL), and tibialis anterior (TA) were measured bilaterally, along with the excursions of the center of pressure (COP) during each movement. In both unilateral and bilateral tasks, subjects showed a scaling of EMG area and COP excursion with the acceleration of the arm movement. Prior to movement onset, significant scaling of EMG area with movement speed occurred in both unilateral and bilateral tasks in most muscles. Following movement onset, EMG areas scaled significantly to movement speed in only the anterior musculature, with the exception of the left BF. The latency of BF was consistent for the four fastest movements. Only the slowest movements resulted in a significant rightward shift of the BF EMG latency. During the unilateral task, the ipsilateral hamstrings were activated significantly earlier than in the bilateral task and the contralateral hamstrings were activated significantly later. It was also observed that subjects utilized one of two different strategies to maintain balance. Five individuals displayed simultaneous anterior/posterior muscle activation while the other four displayed a reciprocal pattern of activation. Regardless of the initial standing position (leaning forwards or backwards), subjects used the same simultaneous or reciprocal activation strategy. The results indicate that muscle activation patterns change with different tasks, but remain the same during variations of the same task.
The Journal of Physiology | 2001
L. Griffin; S. J. Garland; Tanya D. Ivanova; E. R. Gossen
1 In keeping with the ‘muscular wisdom hypothesis’, many studies have documented that the firing rate of the majority of motor units decreased during fatiguing isometric contractions. The present study investigated whether the application of periodic muscle vibration, which strongly activates muscle spindles, would alter the modulation of motor unit firing rate during submaximal fatiguing isometric contractions. 2 Thirty‐three motor units from the lateral head of the triceps brachii muscle were recorded from 10 subjects during a sustained isometric 20 % maximal voluntary contraction (MVC) of the elbow extensors. Vibration was interposed on the contraction for 2 s every 10 s. Twenty‐two motor units were recorded from the beginning of the fatigue task. The discharge rate of the majority of motor units remained constant (12/22) or increased (4/22) with fatigue. Six motor units demonstrated a reduction in discharge rate that later returned toward initial values; these motor units had higher initial discharge rates than the other 16 motor units. 3 In a second series of experiments, four subjects held a sustained isometric 20 % MVC for 2 min and then vibration was applied as above for the remainder of the contraction. In this case, motor units initially demonstrated a decrease in firing rate that increased after the vibration was applied. Thus muscle spindle disfacilitation of the motoneurone pool may be associated with the decline of motor unit discharge rate observed during the first 2 min of the contraction. 4 In a third set of experiments, seven subjects performed the main experiment on one occasion and repeated the fatigue task without vibration on a second occasion. Neither the endurance time of the fatiguing contraction nor the MVC torque following fatigue was affected by the application of vibration. This finding calls into question the applicability of the muscular wisdom hypothesis to submaximal contractions.
Muscle & Nerve | 1998
Tanya D. Ivanova; S. J. Garland; K.J. Miller
The purpose of this study was to contrast the discharge patterns of the same motor units during movements and during isometric contractions that were produced with comparable torque‐time characteristics. Subjects performed elbow flexion and extension movements with predetermined acceleration characteristics. The average acceleration and deceleration profiles for the movements were reproduced in the isometric setting by presenting the kinematic profiles as templates for torque production. Trained subjects were able to match the first agonist (AG1) and antagonist (ANT) electromyographic (EMG) bursts, but tended to produce a smaller second agonist burst (AG2) in the isometric contraction. Twenty‐five motor units from triceps brachii were studied. The same motor units (with one exception) were recruited and subsequently discharged in a similar fashion in both the isometric and movement tasks in the AG1 and ANT EMG bursts, with fewer motor unit discharges in the AG2 burst in the isometric contraction. The central control mechanisms appear to be the same for the acceleration phase of movement and isometric contraction, but differ during the deceleration phase.
Experimental Brain Research | 2000
L. Griffin; Tanya D. Ivanova; S. J. Garland
Abstract. Motor unit firing rates of the triceps brachii muscle have been shown to decline during sustained isometric contractions, but not if the fatiguing contraction incorporates arm movements. The purpose of this study was to determine the impact of the actual physical displacement of the limb on the maintenance of motor unit discharge rate during dynamic muscle fatigue. An isometric force pulse paradigm was used to recreate the motor unit activity patterns that occur during a dynamic contraction. With this paradigm, the variable force output that would occur during a dynamic contraction remained intact, but the movement of the limb was eliminated. Motor unit firing rates declined in the isometric force pulse protocol. Thus, factors related to the actual movement of the limb appear to enable the maintenance of motor unit discharge rates during fatigue.
Journal of Applied Physiology | 1994
S. J. Garland; Roger M. Enoka; L. P. Serrano; Grant A. Robinson