Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. M. Bellairs is active.

Publication


Featured researches published by S. M. Bellairs.


Euphytica | 2002

Seed dormancy mechanisms in warm season grass species

S. W. Adkins; S. M. Bellairs; Donald S. Loch

Available evidence suggests that there are at least two locations for dormancy mechanisms in primary dormant seeds: mechanisms based within the embryo covering structures, and mechanisms based within the embryo. Mechanisms within the covering structures may involve mechanical, permeability and chemical barriers to germination. Mechanisms within the embryo may involve the expression of certain genes, levels of certain plant growth regulators, the activity of important respiratory pathways or the mobilisation and utilisation of food reserves. In addition, some embryos may be too immature to germinate immediately and must undergo a further growth phase before germination is possible. An individual species could have one or several of these various dormancy mechanisms and these mechanisms need to be understood when selecting treatments to overcome dormancy. The way in which certain dormancy breaking agents are thought to work is discussed and practical applications of such agents in field situations are explained.


Australian Journal of Botany | 2010

A wide diversity of epicormic structures is present in Myrtaceae species in the northern Australian savanna biome – implications for adaptation to fire

Geoffrey E. Burrows; S.K. Hornby; David Waters; S. M. Bellairs; Lynda D. Prior; David M. J. S. Bowman

Recent research has shown that the eucalypts of southern Australia have an unusual and apparently fire-adapted epicormic structure. By studying a range of myrtaceous species from northern Australia we hoped to determine if this structure was also present in northern eucalypts. We anatomically examined the epicormic structures from 21 myrtaceous species in 11 genera from the north of the Northern Territory, Australia. An extremely wide diversity of epicormic structures was found, ranging from buds absent, buds at or near the bark surface, to bud-forming meristems in the innermost bark. These Myrtaceae species displayed a far greater variation in epicormic structure than recorded in any other family. This is possibly a reflection of the importance of the resprouter strategy, a long fire history in Australia and the ecological diversification of the Myrtaceae. Nonetheless, all the investigated eucalypts (northern and southern) possessed the same specialised, apparently fire-adapted, epicormic structure. This is remarkably consistent given the taxonomic, geographical and morphological diversity of the eucalypts.


Australian Journal of Botany | 2013

Germination of selected Australian native grass species, with potential for minesite rehabilitation

G. J. Farley; S. M. Bellairs; S. W. Adkins

Native grasses have become increasingly important in the post-mining landscape where land rehabilitators try to reconstruct vegetation communities similar to those present before land clearing. So as to include native grasses in these communities, there is a requirement to understand their germination biology, because in the past, many grasses have typically been hard to establish in the final community. The present study found that poor germination of 13 native grass species was due to (1) low percentage of seed fill, (2) low seed viability of filled seeds and/or (3) seed dormancy. Eight species had dormancy treatments investigated. Most were found to exhibit at least one form of dormancy that was either located in the hull structures immediately external to the caryopsis (i.e. the lemma, palea and glumes), within the seed coat (i.e. testa and pericarp, tissues that are found inside the hull, but external to the embryo and endosperm) and/or within the embryo. Seven of the grass species tested were found to have a dormancy mechanism present in two or more locations of their dispersal unit. Germination of the selected native grass species could be improved by (1) processing seeds to enrich the percentage of seeds that are filled, (2) testing viability to ensure a high proportion of the seeds are likely to germinate or (3) using methods to help overcome dormancy and promote germination.


Australian Journal of Botany | 2004

Improved germination of the Australian natives: Hibbertia commutata, Hibbertia amplexicaulis (Dilleniaceae), Chameascilla corymbosa (Liliaceae) and Leucopogon nutans (Epacridaceae)

S. M. Allan; S. W. Adkins; C. A. Preston; S. M. Bellairs

Hibbertia commutata (Steudel), H. amplexicaulis (Steudel), Chameascilla corymbosa ((R.Br.) F.Muell. Ex Benth.) and Leucopogon nutans (E.Pritzel) are four Australian species that are difficult to germinate during mine-site rehabilitation. Laboratory germination trails were conducted to identify dormancy mechanisms and to improve germination response. Treatments applied to all species included scarification and scarification followed by soaking seeds in smoke water (1, 5 or 10%) or gibberellic-acid solution (50, 200 or 1000 µM). Additional treatments with kinetin solution (50, 200 or 1000 µM) and smoke water (50 or 100%) were applied to scarified or unscarified seeds of C. corymbosa. Thermal-shock treatment was applied to L. nutans fruit, some of which were subsequently scarified and subjected to both smoke water (10%) and gibberellic-acid solution (1000 µM). Significant germination increases were obtained by using dormancy-breaking treatments on H. commutata (from 12.8 to 76.0%), H. amplexicaulis (from 6.8 to 55.1%) and C. corymbosa (from 48.5 to 86.4%). Scarification alone increased germination of both Hibbertia species, suggesting that these species display a physical seed coat-imposed dormancy mechanism. Germination of H. amplexicaulis was further increased by the application of gibberellic-acid solution, indicating a possible embryo-imposed dormancy mechanism. Scarification followed by the application of smoke water produced the highest germination response for C. corymbosa seeds. Scarification alone did not significantly increase germination, inferring the existence of a smoke-responsive embryo dormancy mechanism. Seeds of L. nutans, although viable, failed to germinate and are thought to display complex seed coat- and embryo- imposed dormancy mechanisms.


Rangeland Journal | 2006

The effects of temperature and salinity on Acacia harpophylla (brigalow) (Mimosaceae) germination

S. M. Reichman; S. M. Bellairs; D. R. Mulligan

Acacia harpophylla F. Muell. (brigalow) used to naturally occur over a range of about 50 000 km(2) in Queensland and New South Wales, Australia. Large scale clearing for agriculture has reduced the area to less than 20 000 km(2) and it is estimated that 20-25% of vertebrate fauna living in brigalow communities will become locally extinct as a result of the current clearing induced loss of habitat. Some coal mining companies in central Queensland have become interested in providing habitat for the endangered bridle nail-tailed wallaby that lives in brigalow vegetation. However, there is little known about establishment techniques for brigalow on mine sites and other disturbed ground; an understanding of brigalow biology and ecology is required to assist in the conservation of this threatened vegetation community and for re-creation of bridled nail-tail wallaby habitat in the post mining landscape. Brigalow is an unusual species of Acacia because it is not hard-seeded and germinates readily without the need to break seed-coat imposed dormancy. Germination trials were undertaken to test the ability of brigalow seed to germinate with a range of temperatures and salinity levels similar to those experienced in coal mine spoil. Optimum germination was found to occur at temperatures from 15 to 38 degrees C and no germination was recorded at 45 degrees C. Brigalow was very tolerant of high salt levels and germinated at percentages greater than 50% up to the highest salinity tested, 30 dS/m. Germination of greater than 90% occurred up to an electrical conductivity of 20 dS/m. The results indicate brigalow seed can be sown in summer when rains are most likely to occur, however, shading of the seed with extra soil or mulch may ensure the ground surface does not become too hot for germination. Because of its ability to germinate at high salinity levels, brigalow may be suitable for use in saline mine wastes which are common on sites to be rehabilitated after mining.


Australian Journal of Botany | 2014

Acacia holosericea (Fabaceae) litter has allelopathic and physical effects on mission grass (Cenchrus pedicellatus and C. polystachios) (Poaceae) seedling establishment

Muhammad S. Quddus; S. M. Bellairs; Penelope A. Wurm

Invasion of grass weeds is a major threat for ecosystems. Mission grass (Cenchrus pedicellatus and C. polystachios) vigorously competes with native vegetation and has become a serious problem in northern Australian savanna. A lower density of mission grass has been observed under the canopy of stands of native Acacia holosericea. We used a series of laboratory and shade house experiments to assess the potential for allelopathy and the role of litter on germination, emergence and seedling growth of these two species of mission grass. Different concentrations of aqueous leaf extract of A. holosericea were used to assess allelopathic effects on germination. Various depths and types of litter were used to investigate the allelopathic and physical effects of litter on emergence and growth of mission grass seedlings in the shade house. Results indicate that extracts did not affect germination of either species of mission grass but root growth of seedlings was affected. Emergence of seedlings in the shade house was affected by physical litter treatments but not by allelopathy. After emergence no negative effects on seedling growth were detected. Overall we found that there was no allelopathic effect on germination and that the negative effect on emergence was due to the physical properties of the litter. This effect on emergence increased with increasing depth of litter. Allelopathy slightly inhibited root growth but once seedlings emerged, litter tended to facilitate growth. This has implications for the ecological management of mission grass on disturbed lands, using strategies such as manipulation of litter cover through Acacia establishment.


Australian Journal of Botany | 2016

Seed-germination responses of Calotropis procera (Asclepiadaceae) to temperature and water stress in northern Australia

Enock O. Menge; S. M. Bellairs; Michael J. Lawes

Understanding the seed biology of the introduced weed rubber bush (Calotropis procera (Aiton, W.T.Aiton)) is critical to its management in northern Australia. We examined the numbers of seeds produced and the effects of environmental temperature and water stress on germination performance (germinability G; mean germination time MGT) of rubber bush seeds from across northern Australia. Germination trials were conducted using seeds from wild populations monitored for 3 years. Seed numbers per fruit did not vary significantly among the six populations studied (mean ± s.e. = 433.2 ± 19.0), but seed mass did (range from 8.32 ± 0.24 to 5.24 ± 0.06 mg), with no negative correlation between the measures. Maximum seed germination (68–100%) occurred at 30°C, associated with a mean germination time of 2.58 days. Under water stress, the proportion of germinated seeds declined significantly with increasing temperature from 92.5 ± 1.1% at 20°C and 0 MPa to 2.8 ± 1.7% at 40°C and –0.4 MPa respectively. Seeds were unable to germinate at ambient temperatures ≥40°C, but remained quiescent and hence viable. Planting depth influenced seedling emergence, with minimal germination of seeds on the surface (5.8%) but 88.5% germination at 3-cm depth. The effect of water stress was dependent on temperature, with water stress inducing a reduction in optimum germination temperature from 30°C to 20°C. Phenotypic plasticity in G and MGT did not show clear patterns among populations or years. Short MGTs increase seedling survival by rapid transition from endosperm resources to photosynthesis, whereas seed quiescence (cf. dormancy) optimises germination opportunities in a semiarid environment. Thus, the germination traits reported in the present study are likely to promote seedling survival and potential spread of rubber bush in semiarid Australia.


Australian Journal of Botany | 2006

Seed biology implications for the maintenance and establishment of Tetratheca juncea (Tremandraceae), a vulnerable Australian species

S. M. Bellairs; F. V. Bartier; A. J. Gravina; K. Baker

Tetratheca juncea Smith is an endemic and vulnerable shrub species with apparently poor recruitment from New South Wales, Australia. Lack of understanding of seed biology limits management options for promoting survival of existing populations and recruitment of new populations. This study investigated the soil seed bank, seed viability, germination and seed dormancy. The plants release seeds in January but no seeds germinated from soil collected near the plants in September 1999, irrespective of the soil being treated by smoke, heat or fire. When sampled again in February 2001, seeds were present in the soil seed bank but were not viable. Viability testing of seeds collected from the plants determined that at least a third of the seeds being produced were viable, even after storage for 6 months. Seed germination and dormancy investigations found that the seeds germinated following exposure to smoke or scarification of the seed coat. Untreated seeds did not germinate during the preliminary study, although a proportion of untreated seeds germinated from a later seed lot. Fire management is important for promoting the survival of this species and the soil seed bank cannot be relied on for re-establishment of populations as the longevity of the soil seed bank seems to be short. Many other species of Tetratheca are also rare or threatened and this study suggests that hand-collected seeds treated with fire-related stimuli may be important for re-establishing those species and that the soil seed bank requires assessment before being relied on as a source of propagules or for maintaining a population.


Australian Journal of Botany | 2015

Temperature affects the dormancy and germination of sympatric annual (Oryza meridionalis) and perennial (O. rufipogon) native Australian rices (Poaceae) and influences their emergence in introduced para grass (Urochloa mutica) swards

S. M. Bellairs; Penelope A. Wurm; Beckie Kernich

The seed biology of two ecologically and genetically important sympatric wild rice species from northern Australia was compared – perennial Oryza rufipogon Griff. and annual Oryza meridionalis N.Q.Ng. The aim was to determine mechanisms of dormancy exhibited at seed shed and to identify factors that trigger or inhibit germination. This information was used to investigate the ecology of in situ Oryza populations in introduced para grass swards (Urochloa mutica (Forssk.) T.Q. Nguyen) and to understand interactions between the two sympatric Oryza species. Primary dormancy in the two species is similar, namely, non-deep physiological dormancy, determined by external maternal structures and broken by warm temperature treatments equivalent to dry season soil temperatures. Light quality, smoke water, gibberellic acid and nitric acid treatments had minor influences on germination. Changes to the soil profile and aboveground biomass structure due to swards of U. mutica significantly affected emergence of O. meridionalis. Thus the influence of soil temperature explains the results of previous field studies in which biomass or litter on the soil surface prevented germination. This has implications for biodiversity management on monsoonal floodplains of northern Australia, where introduced pasture species produce greater biomass than native grasslands, reduce soil temperatures and are displacing native rices. There were differences between the Oryza species – dormancy was more quickly broken in annual O. meridionalis, reflecting the reduced need for investment in seed bank persistence for annual species in annually inundated and climatically reliable wetlands.


Rangeland Journal | 2007

Effect of seed treatment on the emergence of Cassia brewsteri and Lysiphyllum carronii seeds stored in soil

S. M. Reichman; S. M. Bellairs; D. R. Mulligan

Dormancy-breaking treatments are applied to seeds of many Australian species used for mine-site restoration in arid and semi-arid regions of Australia. Once seeds are sown, several months may pass before a rain event sufficient for germination. Therefore, it is important that treated seeds are able to survive in soil until conditions are hospitable for germination and growth. However, little is known about the effects of seed dormancy-breaking treatments on the longevity of seeds in soil. Two species that are potential candidates for use in mine site restoration programs in Queensland were trialed viz., Cassia brewsteri (F. Muell.) Benth and Lysiphyllum carronii (F. Muell.) Pedley. Untreated, boiled and acid treated seeds of the two species were sown in soil in a glasshouse. Seeds were watered immediately or kept dry for one or three months before watering and emergence was assessed. When applied to seeds incubated on filter paper in a germination cabinet, boiling and acid treatments were effective methods of breaking dormancy and increasing germination for both C. brewsteri and L. carronii seeds. However, in soil, seedling emergence from boiled seeds was the same or less than that of untreated seeds. Storage time in soil before watering had little effect on seedling emergence in the glasshouse, suggesting that most decreases in emergence compared with laboratory germination occurred after the input of water to the system. Treatments that promote germination in the laboratory can reduce seedling emergence in soil. Thus, treated seeds should be tested for survival in soil before use in mine- site restoration programs.

Collaboration


Dive into the S. M. Bellairs's collaboration.

Top Co-Authors

Avatar

S. W. Adkins

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

D. R. Mulligan

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

A. J. Gravina

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. J. Farley

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. Read

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

A. H. Grigg

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. M. Allan

University of Queensland

View shared research outputs
Researchain Logo
Decentralizing Knowledge