Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. R. Mulligan is active.

Publication


Featured researches published by D. R. Mulligan.


Toxicology Letters | 2003

A field study conducted at Kidston Gold Mine, to evaluate the impact of arsenic and zinc from mine tailing to grazing cattle

S. L. Bruce; B. N. Noller; A. H. Grigg; B. F. Mullen; D. R. Mulligan; P. J. Ritchie; N. A. Currey; J. C. Ng

The grazing trial at Kidston Gold Mine, North Queensland, was aimed specifically to assess the uptake of metals from the tailing and the potential for unacceptable contamination of saleable meat. Further aims included estimating metal dose rates and identifying potential exposure pathways including plant uptake of heavy metals, mine tailings adhered to plants and direct ingestion of mine tailing. It was found that of the 11 metals analysed (As, Zn, Co, Cd, Cr, Sn, Pb, Sb, Hg, Se and Ni) in the animals liver, muscle and blood during the 8-month trial period, only accumulation of arsenic and zinc occurred. A risk assessment including these two metals was conducted to determine the potential for chronic metal toxicity and long-term contamination, using the estimates of metal dose rate. It was concluded that no toxicity or long-term contamination in cattle was likely at this site. Management procedures were therefore not required at this site; however, the results highlight percent ground cover and standing dry matter (DM) as important factors in decreasing metal exposure from direct ingestion of tailings and dust adhered to plants.


Soil Research | 2000

Soil stripping and replacement for the rehabilitation of bauxite-mined land at Weipa. II. Soil organic matter dynamics in mine soil chronosequences

G. D. Schwenke; L. Ayre; D. R. Mulligan; L. C. Bell

Concern over the long-term sustainability of post-mining ecosystems at Weipa (North Queensland, Australia) led to investigations of soil organic matter dynamics, a key process linking soil and vegetation development in maintenance-free systems. Paper I of this series examined the short-term effects of rehabilitation operations on soil organic matter. Here, we assess the medium-term development of post-rehabilitation soil organic matter quantity and quality using mine soil chronosequences of up to 22 years post-rehabilitation at Weipa. Soils had been respread either immediately after stripping or after stripped soil had been stockpiled for several years. Sites surveyed were revegetated with native tree and shrub species, forestry (Khaya senegalensis), or pasture (Brachiaria decumbens/Stylosanthes spp.). Three areas of undisturbed native forest were included for comparison. Compared with the undisturbed forest, rehabilitated soils were shallower and more compacted, contained more gravel, and, as a result of topsoil-subsoil mixing, stored less organic matter in the surface soil. Rehabilitated sites respread with stockpiled soil were more compacted and lower in all quantitative and qualitative measures of organic matter than freshly replaced soils. With time, organic matter accumulated in the surface soil under all vegetation types at rates of up to 1.25 t C/ha. year, but new equilibrium levels were yet to be reached. Accumulated organic matter was mostly associated with clay and silt-sized particles, indicating effective cycling of litter to humus. Nitrogen mineralisation capacity increased with time under all vegetation types. The incidence of fire led to increased total and light-fraction organic C, but this was probably as charcoal C. Sites where volunteer grass biomass was reduced pre-planting by late-season stripping or disc-ploughing accumulated less organic C. To optimise post-mining soil organic matter development, we recommend that soil stockpiling be avoided, that more volunteer grasses be retained to ensure continuity of organic inputs, and that attention be focussed on minimising soil compaction and gravel incorporation-both permanent limitations to plant growth.


Soil Research | 2000

Soil stripping and replacement for the rehabilitation of bauxite-mined land at Weipa. I. Initial changes to soil organic matter and related parameters.

G. D. Schwenke; D. R. Mulligan; L. C. Bell

At Weipa, in Queensland, Australia, sown tree and shrub species sometimes fail to establish on bauxite-mined land, possibly because surface-soil organic matter declines during soil stripping and replacement. We devised 2 field experiments to investigate the links between soil rehabilitation operations, organic matter decline, and revegetation failure. Experiment 1 compared two routinely practiced operations, dual-strip (DS) and stockpile soil, with double-pass (DP), an alternative method, and subsoil only, an occasional result of the DS operation. Other treatments included variations in stripping-time, ripping-time, fertiliser rate, and cultivation. Dilution of topsoil with subsoil, low-grade bauxite, and ironstone accounted for the 46% decline of surface-soil (0-10 cm) organic C in DS compared with pre-strip soil. In contrast, organic C in the surface-soil (0-10 cm) of DP plots (25.0 t/ha) closely resembled the pre-strip area (28.6 t/ha). However, profile (0-60 cm) organic C did not differ between DS (91.5 t/ha), DP (107 t/ha), and pre-strip soil (89.9 t/ha). Eighteen months after plots were sown with native vegetation, surface-soil (0-10 cm) organic C had declined by an average of 9% across all plots. In Experiment 2, we measured the potential for post-rehabilitation decline of organic matter in hand-stripped and replaced soil columns that simulated the DS operation. Soils were incubated in situ without organic inputs. After 1 years incubation, organic C had declined by up to 26% and microbial biomass C by up to 61%. The difference in organic C decline between vegetated replaced soils (Expt 1) and bare replaced soils (Expt 2) showed that organic inputs affect levels of organic matter more than soil disturbance. Where topsoil was replaced at the top of the profile (DP) and not ploughed, inputs from volunteer native grasses balanced oxidation losses and organic C levels did not decline.


Plant and Soil | 2001

Seedling responses of three Australian tree species to toxic concentrations of zinc in solution culture

S. M. Reichman; C. J. Asher; D. R. Mulligan; Neal W. Menzies

A frequently desired outcome when rehabilitating Zn toxic sites in Australia is to establish a self-sustaining native ecosystem. Hence, it is important to understand the tolerance of Australian native plants to high concentrations of Zn. Very little is known about the responses of Australian native plants, and trees in particular, to toxic concentrations of Zn. Acacia holosericea, Eucalyptus camaldulensis and Melaleuca leucadendra plants were grown in dilute solution culture for 10 weeks. The seedlings (42 days old) were exposed to six Zn treatments viz., 0.5, 5, 10, 25, 50 and 100 μM. The order of tolerance to toxic concentrations of Zn was E. camaldulensis> A. holosericea> M. leucadendra, the critical external concentrations being approximately 20, 12 and 1.5 μM, respectively. Tissue Zn concentrations increased as solution Zn increased for all species. Root tissue concentrations were higher than shoot tissue concentrations at all solution Zn concentrations. The critical tissue Zn concentrations were approximately 85 and 110 μg g−1 DM for M. leucadendra, 115 and 155 μg g−1 DM for A. holosericea and 415 and 370 μg g−1 DM for E. camaldulensis for the youngest fully expanded leaf and total shoots, respectively. The results from this paper provide the first comprehensive combination of growth responses, critical external concentrations, critical tissue concentrations and plant toxicity symptoms for three important Australian genera, viz., Eucalyptus, Acacia and Melaleuca, for use in the rehabilitation of potentially Zn toxic sites.


Soil Research | 2006

The effect of organic mulch amendments on the physical and chemical properties and revegetation success of a saline-sodic minespoil from central Queensland, Australia

A. H. Grigg; Gary J. Sheridan; A. B. Pearce; D. R. Mulligan

Saline-sodic clay minespoil materials excavated during open-cut coal mining in central Queensland, Australia, pose significant challenges for revegetation, particularly where suitable topsoil capping is not available. We examined the ability of sawdust or straw mulch amendments to ameliorate the adverse properties of these minespoils and improve the success of revegetation efforts. In laboratory studies, mulch application improved infiltration, increased soil moisture retention and reduced surface crust strength. In the field, mulches incorporated to a depth of 0.15 m at application rates of at least 20 t/ha straw or 80 t/ha sawdust were needed to mitigate against capillary rise of salts during drying cycles and support satisfactory vegetation cover. Further research is needed to determine whether improvements are maintained beyond the 4-year trial period reported here.


Journal of Plant Nutrition | 2006

Responses of four Australian tree species to toxic concentrations of copper in solution culture

S. M. Reichman; Neal W. Menzies; C. J. Asher; D. R. Mulligan

ABSTRACT In Australia, metal-contaminated sites, including those with elevated levels of copper (Cu), are frequently revegetated with endemic plants. Little is known about the responses of Australian plants to excess Cu. Acacia holosericea, Eucalyptus crebra, Eucalyptus camaldulensis, and Melaleuca leucadendra were grown in solution culture with six Cu treatments (0.1 to 40 μ M). While A. holosericea was the most tolerant to excess Cu, all of the species tested were sensitive to excess Cu when compared with exotic tree and agricultural species. The critical external concentrations for toxicity were < 0.7 μM for all species tested. There was little differentiation between shoot-tissue Cu concentrations in normal versus treated plants, thus, the derivation of critical shoot concentrations was possible only for the most tolerant species, A. holosericea. Critical root Cu concentrations were approximately 210 μg g−1 (A. holosericea), 150 μ g g−1 (E. crebra), 25 μ g g−1 (E. camaldulensis), and 165 μ g g−1 (M. leucadendra). These results provide the first comprehensive combination of growth responses, critical concentrations, and toxicity symptoms for three important Australian genera for use in the management of Cu-contaminated sites.


Annals of Botany | 2015

In situ analysis of foliar zinc absorption and short-distance movement in fresh and hydrated leaves of tomato and citrus using synchrotron-based X-ray fluorescence microscopy

Yumei Du; Peter M. Kopittke; B. N. Noller; Simon A. James; Hugh H. Harris; Zhi Ping Xu; Peng Li; D. R. Mulligan; Longbin Huang

BACKGROUND AND AIMS Globally, zinc deficiency is one of the most important nutritional factors limiting crop yield and quality. Despite widespread use of foliar-applied zinc fertilizers, much remains unknown regarding the movement of zinc from the foliar surface into the vascular structure for translocation into other tissues and the key factors affecting this diffusion. METHODS Using synchrotron-based X-ray fluorescence microscopy (µ-XRF), absorption of foliar-applied zinc nitrate or zinc hydroxide nitrate was examined in fresh leaves of tomato (Solanum lycopersicum) and citrus (Citrus reticulatus). KEY RESULTS The foliar absorption of zinc increased concentrations in the underlying tissues by up to 600-fold in tomato but only up to 5-fold in citrus. The magnitude of this absorption was influenced by the form of zinc applied, the zinc status of the treated leaf and the leaf surface to which it was applied (abaxial or adaxial). Once the zinc had moved through the leaf surface it appeared to bind strongly, with limited further redistribution. Regardless of this, in these underlying tissues zinc moved into the lower-order veins, with concentrations 2- to 10-fold higher than in the adjacent tissues. However, even once in higher-order veins, the movement of zinc was still comparatively limited, with concentrations decreasing to levels similar to the background within 1-10 mm. CONCLUSIONS The results advance our understanding of the factors that influence the efficacy of foliar zinc fertilizers and demonstrate the merits of an innovative methodology for studying foliar zinc translocation mechanisms.


Water Science and Technology | 1997

Trialing wetlands to treat coal mining wastewaters in a low rainfall, high evaporation environment

Wendy R. Tyrrell; D. R. Mulligan; Lindsay I. Sly; L. Clive Bell

The large number of wetlands treating mining wastewaters around the world have mostly been constructed in temperate environments. Wetlands have yet to be proven in low rainfall, high evaporation environments and such conditions are common in many parts of Australia. BHP Australia Coal is researching whether wetlands have potential in central Queensland to treat coal mining wastewaters. In this region, mean annual rainfall is 2 000 mm. A pilot-scale wetland system has been constructed at an open-cut coal mine. The system comprises six treatment cells, each 125 m long and 10 m wide. The system is described in the paper and some initial results presented. Results over the first fourteen months of operation have shown that although pH has not increased enough to enable reuse or release of the water, sulfate reduction has been observed in parts of the system, as shown by the characteristic black precipitate and smell of hydrogen sulfide emanating from the wetlands. These encouraging signs have led to experiments aimed at identifying the factors limiting sulfate reduction. The first experiment, described herein, included four treatments where straw was overlain by soil and the water level varied, being either at the top of the straw, at the top of the soil, or about 5 cm above the soil. The effect of inoculating with sulfate-reducing bacteria was investigated. Two controls were included, one covered and one open, to enable the effect of evaporation to be determined. The final treatment consisted of combined straw/cattle manure overlain with soil. Results showed that sulfate reduction did occur, as demonstrated by pH increases and lowering of sulfate levels. Mean pH of the water was significantly higher after 19 days; in the controls, pH was


Integrated Environmental Assessment and Management | 2016

Integrated risk and recovery monitoring of ecosystem restorations on contaminated sites

Michael J. Hooper; Stephen J Glomb; David D. Harper; Timothy B Hoelzle; Lisa M McIntosh; D. R. Mulligan

Ecological restorations of contaminated sites balance the human and ecological risks of residual contamination with the benefits of ecological recovery and the return of lost ecological function and ecosystem services. Risk and recovery are interrelated dynamic conditions, changing as remediation and restoration activities progress through implementation into long-term management and ecosystem maturation. Monitoring restoration progress provides data critical to minimizing residual contaminant risk and uncertainty, while measuring ecological advancement toward recovery goals. Effective monitoring plans are designed concurrently with restoration plan development and implementation and are focused on assessing the effectiveness of activities performed in support of restoration goals for the site. Physical, chemical, and biotic measures characterize progress toward desired structural and functional ecosystem components of the goals. Structural metrics, linked to ecosystem functions and services, inform restoration practitioners of work plan modifications or more substantial adaptive management actions necessary to maintain desired recovery. Monitoring frequency, duration, and scale depend on specific attributes and goals of the restoration project. Often tied to restoration milestones, critical assessment of monitoring metrics ensures attainment of risk minimization and ecosystem recovery. Finally, interpretation and communication of monitoring findings inform and engage regulators, other stakeholders, the scientific community, and the public. Because restoration activities will likely cease before full ecosystem recovery, monitoring endpoints should demonstrate risk reduction and a successional trajectory toward the condition established in the restoration goals. A detailed assessment of the completed projects achievements, as well as unrealized objectives, attained through project monitoring, will determine if contaminant risk has been minimized, if injured resources have recovered, and if ecosystem services have been returned. Such retrospective analysis will allow better planning for future restoration goals and strengthen the evidence base for quantifying injuries and damages at other sites in the future.


Ecological processes | 2013

Structural development of vegetation on rehabilitated North Stradbroke Island: Above/belowground feedback may facilitate alternative ecological outcomes

Patrick Audet; A. J. Gravina; V. Glenn; P. McKenna; H. Vickers; Melina Gillespie; D. R. Mulligan

IntroductionThis study depicts broad-scale revegetation patterns following sand mining on North Stradbroke Island, south-eastern Queensland, Australia.MethodsBased on an ecological timeline spanning 4–20 years post-rehabilitation, the structure of these ecosystems (n = 146) was assessed by distinguishing between periods of ‘older’ (pre-1995) and ‘younger’ (post-1995) rehabilitation practices.ResultsThe general rehabilitation outlook appeared promising, whereby an adequate forest composition and suitable levels of native biodiversity (consisting of mixed-eucalypt communities) were achieved across the majority of rehabilitated sites over a relatively short time. Still, older sites (n = 36) appeared to deviate relative to natural analogues as indicated by their lack of under-storey heath and simplified canopy composition now characterised by mono-dominant black sheoak (Allocasuarina littoralis) reaching up to 60% of the total tree density. These changes coincided with lower soil fertility parameters (e.g., total carbon, total nitrogen, and nutrient holding capacity) leading us to believe that altered growth conditions associated with the initial mining disturbance could have facilitated an opportunistic colonisation by this species. Once established, it is suspected that the black sheoak’s above/belowground ecological behaviour (i.e., relating to its leaf-litter allelopathy and potential for soil-nitrogen fixation) further exacerbated its mono-dominant distribution by inhibiting the development of other native species.ConclusionsAlthough rehabilitation techniques on-site have undergone refinements to improve site management, our findings support that putative changes in edaphic conditions in combination with the competitive characteristics of some plant species can facilitate conditions leading to alternative ecological outcomes among rehabilitated ecosystems. Based on these outcomes, future studies would benefit from in depth spatio-temporal analyses to verify these mechanisms at finer investigative scales.

Collaboration


Dive into the D. R. Mulligan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. H. Grigg

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Mansour Edraki

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. M. Bellairs

Charles Darwin University

View shared research outputs
Top Co-Authors

Avatar

B. N. Noller

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

B. F. Mullen

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

David Doley

University of Queensland

View shared research outputs
Researchain Logo
Decentralizing Knowledge