Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. M. Vinko is active.

Publication


Featured researches published by S. M. Vinko.


Nature | 2012

Creation and diagnosis of a solid-density plasma with an X-ray free-electron laser

S. M. Vinko; O. Ciricosta; B. I. Cho; K. Engelhorn; H.-K. Chung; Colin Brown; T. Burian; J. Chalupský; Roger Falcone; Catherine Graves; V. Hajkova; Andrew Higginbotham; L. Juha; J. Krzywinski; Hae Ja Lee; Marc Messerschmidt; C. D. Murphy; Y. Ping; Andreas Scherz; W. F. Schlotter; S. Toleikis; J. J. Turner; L. Vysin; T. Wang; B. Wu; U. Zastrau; Diling Zhu; R. W. Lee; P. A. Heimann; B. Nagler

Matter with a high energy density (>105 joules per cm3) is prevalent throughout the Universe, being present in all types of stars and towards the centre of the giant planets; it is also relevant for inertial confinement fusion. Its thermodynamic and transport properties are challenging to measure, requiring the creation of sufficiently long-lived samples at homogeneous temperatures and densities. With the advent of the Linac Coherent Light Source (LCLS) X-ray laser, high-intensity radiation (>1017 watts per cm2, previously the domain of optical lasers) can be produced at X-ray wavelengths. The interaction of single atoms with such intense X-rays has recently been investigated. An understanding of the contrasting case of intense X-ray interaction with dense systems is important from a fundamental viewpoint and for applications. Here we report the experimental creation of a solid-density plasma at temperatures in excess of 106 kelvin on inertial-confinement timescales using an X-ray free-electron laser. We discuss the pertinent physics of the intense X-ray–matter interactions, and illustrate the importance of electron–ion collisions. Detailed simulations of the interaction process conducted with a radiative-collisional code show good qualitative agreement with the experimental results. We obtain insights into the evolution of the charge state distribution of the system, the electron density and temperature, and the timescales of collisional processes. Our results should inform future high-intensity X-ray experiments involving dense samples, such as X-ray diffractive imaging of biological systems, material science investigations, and the study of matter in extreme conditions.


Nature Communications | 2014

Density functional theory calculations of continuum lowering in strongly coupled plasmas

S. M. Vinko; O. Ciricosta; J. S. Wark

An accurate description of the ionization potential depression of ions in plasmas due to their interaction with the environment is a fundamental problem in plasma physics, playing a key role in determining the ionization balance, charge state distribution, opacity and plasma equation of state. Here we present a method to study the structure and position of the continuum of highly ionized dense plasmas using finite-temperature density functional theory in combination with excited-state projector augmented-wave potentials. The method is applied to aluminium plasmas created by intense X-ray irradiation, and shows excellent agreement with recently obtained experimental results. We find that the continuum lowering for ions in dense plasmas at intermediate temperatures is larger than predicted by standard plasma models and explain this effect through the electronic structure of the valence states in these strong-coupling conditions.


Optics Express | 2009

Soft x-ray free electron laser microfocus for exploring matter under extreme conditions

A. J. Nelson; S. Toleikis; Henry N. Chapman; Sasa Bajt; J. Krzywinski; J. Chalupsky; L. Juha; Jaroslav Cihelka; V. Hajkova; L. Vysin; T. Burian; M. Kozlova; R. R. Fäustlin; B. Nagler; S. M. Vinko; T. Whitcher; T. Dzelzainis; O. Renner; Karel Saksl; A.R. Khorsand; Philip A. Heimann; R. Sobierajski; D. Klinger; M. Jurek; J.B. Pełka; Bianca Iwan; Jakob Andreasson; Nicusor Timneanu; M. Fajardo; J. S. Wark

We have focused a beam (BL3) of FLASH (Free-electron LASer in Hamburg: lambda = 13.5 nm, pulse length 15 fs, pulse energy 10-40 microJ, 5 Hz) using a fine polished off-axis parabola having a focal length of 270 mm and coated with a Mo/Si multilayer with an initial reflectivity of 67% at 13.5 nm. The OAP was mounted and aligned with a picomotor controlled six-axis gimbal. Beam imprints on poly(methyl methacrylate) - PMMA were used to measure focus and the focused beam was used to create isochoric heating of various slab targets. Results show the focal spot has a diameter of < or =1 microm. Observations were correlated with simulations of best focus to provide further relevant information.


Nature Communications | 2015

Investigation of femtosecond collisional ionization rates in a solid-density aluminium plasma

S. M. Vinko; O. Ciricosta; T. R. Preston; D. S. Rackstraw; Colin Brown; T. Burian; J. Chalupský; B. I. Cho; H.-K. Chung; K. Engelhorn; Roger Falcone; R. Fiokovinini; V. Hajkova; P. A. Heimann; L. Juha; H. J. Lee; R. W. Lee; M. Messerschmidt; B. Nagler; W. F. Schlotter; J. J. Turner; L. Vysin; U. Zastrau; J. S. Wark

The rate at which atoms and ions within a plasma are further ionized by collisions with the free electrons is a fundamental parameter that dictates the dynamics of plasma systems at intermediate and high densities. While collision rates are well known experimentally in a few dilute systems, similar measurements for nonideal plasmas at densities approaching or exceeding those of solids remain elusive. Here we describe a spectroscopic method to study collision rates in solid-density aluminium plasmas created and diagnosed using the Linac Coherent light Source free-electron X-ray laser, tuned to specific interaction pathways around the absorption edges of ionic charge states. We estimate the rate of collisional ionization in solid-density aluminium plasmas at temperatures ~30 eV to be several times higher than that predicted by standard semiempirical models.


Nature Communications | 2016

Measurements of continuum lowering in solid-density plasmas created from elements and compounds

O. Ciricosta; S. M. Vinko; B. Barbrel; D. S. Rackstraw; T. R. Preston; T. Burian; J. Chalupský; B. I. Cho; H.-K. Chung; Georgi L. Dakovski; K. Engelhorn; V. Hajkova; P. A. Heimann; Michael Holmes; L. Juha; J. Krzywinski; R. W. Lee; S. Toleikis; J. J. Turner; U. Zastrau; J. S. Wark

The effect of a dense plasma environment on the energy levels of an embedded ion is usually described in terms of the lowering of its continuum level. For strongly coupled plasmas, the phenomenon is intimately related to the equation of state; hence, an accurate treatment is crucial for most astrophysical and inertial-fusion applications, where the case of plasma mixtures is of particular interest. Here we present an experiment showing that the standard density-dependent analytical models are inadequate to describe solid-density plasmas at the temperatures studied, where the reduction of the binding energies for a given species is unaffected by the different plasma environment (ion density) in either the element or compounds of that species, and can be accurately estimated by calculations only involving the energy levels of an isolated neutral atom. The results have implications for the standard approaches to the equation of state calculations.


Physics of Plasmas | 2015

The creation of large-volume, gradient-free warm dense matter with an x-ray free-electron laser

Anna Lévy; P. Audebert; R. Shepherd; James Dunn; Marco Cammarata; O. Ciricosta; F. Deneuville; F. Dorchies; M. Fajardo; C. Fourment; David M. Fritz; J. Fuchs; J. Gaudin; M. Gauthier; A. Graf; Hae Ja Lee; Henrik T. Lemke; B. Nagler; J. Park; O. Peyrusse; A. B. Steel; S. M. Vinko; J. S. Wark; G. O. Williams; Diling Zhu; R.W. Lee

The efficiency and uniformity of heating induced by hard x-ray free-electron laser pulse is investigated for 0.5 μm silver foils using the X-ray Pump Probe instrument at the Linac Coherent Light Source facility. Intense 8.9 keV x-ray pulses of 60 fs duration deposit energy predominantly via inner-shell ionization to create a non-equilibrium Ag solid density plasma. The x-ray pulses are focused to 14 × 17 μm2 by means of beryllium lenses and by varying the total beam energy, the energy deposition is varied over a range of irradiances from 4.4 to 6.5 × 1015 W/cm2. Two time-and-space resolved interferometers simultaneously probed the expansion of the front and rear sample surfaces and find evidence of a nearly symmetric expansion pointing to the uniformity of energy deposition over the full target thickness. The experimental results are compared with two different hydrodynamic simulations of the sample expansion. The agreement between experimental and theoretical results yields an estimate of the temperature...


Journal of Physics B | 2010

Probing near-solid density plasmas using soft X-ray scattering

S. Toleikis; T. Bornath; T. Döppner; S. Düsterer; R. R. Fäustlin; E. Förster; C. Fortmann; S. H. Glenzer; S. Göde; G. Gregori; R. Irsig; T. Laarmann; Hae Ja Lee; Bin Li; Karl-Heinz Meiwes-Broer; J. Mithen; B. Nagler; A. Przystawik; P. Radcliffe; H. Redlin; R. Redmer; H. Reinholz; G. Röpke; F. Tavella; R. Thiele; J. Tiggesbäumker; I. Uschmann; S. M. Vinko; T. Whitcher; U. Zastrau

X-ray scattering using highly brilliant x-ray free-electron laser (FEL) radiation provides new access to probe free-electron density, temperature and ionization in near-solid density plasmas. First experiments at the soft x-ray FEL FLASH at DESY, Hamburg, show the capabilities of this technique. The ultrashort FEL pulses in particular can probe equilibration phenomena occurring after excitation of the plasma using ultrashort optical laser pumping. We have investigated liquid hydrogen and find that the interaction of very intense soft x-ray FEL radiation alone heats the sample volume. As the plasma establishes, photons from the same pulse undergo scattering, thus probing the transient, warm dense matter state. We find a free-electron density of (2.6 ± 0.2) × 1020 cm−3 and an electron temperature of 14 ± 3.5 eV. In pump–probe experiments, using intense optical laser pulses to generate more extreme states of matter, this interaction of the probe pulse has to be considered in the interpretation of scattering data. In this paper, we present details of the experimental setup at FLASH and the diagnostic methods used to quantitatively analyse the data.


Scientific Reports | 2015

Evidence for a glassy state in strongly driven carbon

C R D Brown; Dirk O. Gericke; Marco Cammarata; B. I. Cho; T. Döppner; K. Engelhorn; E. Förster; C. Fortmann; David M. Fritz; E. Galtier; S. H. Glenzer; M Harmand; Philip A. Heimann; N. L. Kugland; D. Q. Lamb; Hae Ja Lee; R. W. Lee; Henrik T. Lemke; M. Makita; A. Moinard; C. D. Murphy; B. Nagler; P. Neumayer; Kai-Uwe Plagemann; R. Redmer; David Riley; F.B. Rosmej; P. Sperling; S. Toleikis; S. M. Vinko

Here, we report results of an experiment creating a transient, highly correlated carbon state using a combination of optical and x-ray lasers. Scattered x-rays reveal a highly ordered state with an electrostatic energy significantly exceeding the thermal energy of the ions. Strong Coulomb forces are predicted to induce nucleation into a crystalline ion structure within a few picoseconds. However, we observe no evidence of such phase transition after several tens of picoseconds but strong indications for an over-correlated fluid state. The experiment suggests a much slower nucleation and points to an intermediate glassy state where the ions are frozen close to their original positions in the fluid.


Reports on Progress in Physics | 2017

Short-wavelength free-electron laser sources and science: A review

E A Seddon; J A Clarke; D J Dunning; C Masciovecchio; C J Milne; F Parmigiani; D Rugg; John C. Spence; N R Thompson; K Ueda; S. M. Vinko; J. S. Wark; W Wurth

This review is focused on free-electron lasers (FELs) in the hard to soft x-ray regime. The aim is to provide newcomers to the area with insights into: the basic physics of FELs, the qualities of the radiation they produce, the challenges of transmitting that radiation to end users and the diversity of current scientific applications. Initial consideration is given to FEL theory in order to provide the foundation for discussion of FEL output properties and the technical challenges of short-wavelength FELs. This is followed by an overview of existing x-ray FEL facilities, future facilities and FEL frontiers. To provide a context for information in the above sections, a detailed comparison of the photon pulse characteristics of FEL sources with those of other sources of high brightness x-rays is made. A brief summary of FEL beamline design and photon diagnostics then precedes an overview of FEL scientific applications. Recent highlights are covered in sections on structural biology, atomic and molecular physics, photochemistry, non-linear spectroscopy, shock physics, solid density plasmas. A short industrial perspective is also included to emphasise potential in this area.


Physics of Plasmas | 2016

Detailed model for hot-dense aluminum plasmas generated by an x-ray free electron laser

O. Ciricosta; S. M. Vinko; H.-K. Chung; C. Jackson; R.W. Lee; T. R. Preston; D. S. Rackstraw; J. S. Wark

The possibility of creating hot-dense plasma samples by isochoric heating of solid targets with high-intensity femtosecond X-ray lasers has opened up new opportunities in the experimental study of such systems. A study of the X-ray spectra emitted from solid density plasmas has provided significant insight into the X-ray absorption mechanisms, subsequent target heating, and the conditions of temperature, electron density, and ionization stages produced (Vinko et al., Nature 482, 59–62 (2012)). Furthermore, detailed analysis of the spectra has provided new information on the degree of ionization potential depression in these strongly coupled plasmas (Ciricosta et al., Phys. Rev. Lett. 109, 065002 (2012)). Excellent agreement between experimental and simulated spectra has been obtained, but a full outline of the procedure by which this has been achieved has yet to be documented. We present here the details and approximations concerning the modelling of the experiment described in the above referenced work. We show that it is crucial to take into account the spatial and temporal gradients in simulating the overall emission spectra, and discuss how aspects of the model used affect the interpretation of the data in terms of charge-resolved measurements of the ionization potential depression.

Collaboration


Dive into the S. M. Vinko's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Nagler

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

L. Juha

Czechoslovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R.W. Lee

University of California

View shared research outputs
Top Co-Authors

Avatar

U. Zastrau

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

T. Burian

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

V. Hajkova

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge