Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Matthew Weinberg is active.

Publication


Featured researches published by S. Matthew Weinberg.


foundations of computer science | 2012

Optimal Multi-dimensional Mechanism Design: Reducing Revenue to Welfare Maximization

Yang Cai; Constantinos Daskalakis; S. Matthew Weinberg

We provide a reduction from revenue maximization to welfare maximization in multidimensional Bayesian auctions with arbitrary - possibly combinatorial - feasibility constraints and independent bidders with arbitrary - possibly combinatorial-demand constraints, appropriately extending Myersons single-dimensional result [21] to this setting. We also show that every feasible Bayesian auction - including in particular the revenue-optimal one - can be implemented as a distribution over virtual VCG allocation rules. A virtual VCG allocation rule has the following simple form: Every bidders type ti is transformed into a virtual type fi(ti), via a bidder-specific function. Then, the allocation maximizing virtual welfare is chosen. Using this characterization, we show how to find and run the revenue-optimal auction given only black-box access to an implementation of the VCG allocation rule. We generalize this result to arbitrarily correlated bidders, introducing the notion of a second-order VCG allocation rule. Our results are computationally efficient for all multidimensional settings where the bidders are additive, or can be efficiently mapped to be additive, albeit the feasibility and demand constraints may still remain arbitrary combinatorial. In this case, our mechanisms run in time polynomial in the number of items and the total number of bidder types, but not type profiles. This is polynomial in the number of items, the number of bidders, and the cardinality of the support of each bidders value distribution. For generic correlated distributions, this is the natural description complexity of the problem. The runtime can be further improved to polynomial in only the number of items and the number of bidders in itemsymmetric settings by making use of techniques from [15].


foundations of computer science | 2014

A Simple and Approximately Optimal Mechanism for an Additive Buyer

Moshe Babaioff; Nicole Immorlica; Brendan Lucier; S. Matthew Weinberg

We consider a monopolist seller with n heterogeneousitems, facing a single buyer. The buyer hasa value for each item drawn independently according to(non-identical) distributions, and his value for a set ofitems is additive. The seller aims to maximize his revenue.It is known that an optimal mechanism in this setting maybe quite complex, requiring randomization [19] and menusof infinite size [15]. Hart and Nisan [17] have initiated astudy of two very simple pricing schemes for this setting:item pricing, in which each item is priced at its monopolyreserve; and bundle pricing, in which the entire set ofitems is priced and sold as one bundle. Hart and Nisan [17]have shown that neither scheme can guarantee more thana vanishingly small fraction of the optimal revenue. Insharp contrast, we show that for any distributions, thebetter of item and bundle pricing is a constant-factorapproximation to the optimal revenue. We further discussextensions to multiple buyers and to valuations that arecorrelated across items.


foundations of computer science | 2013

Understanding Incentives: Mechanism Design Becomes Algorithm Design

Yang Cai; Constantinos Daskalakis; S. Matthew Weinberg

We provide a computationally efficient black-box reduction from mechanism design to algorithm design in very general settings. Specifically, we give an approximation-preserving reduction from truthfully maximizing any objective under arbitrary feasibility constraints with arbitrary bidder types to (not necessarily truthfully) maximizing the same objective plus virtual welfare (under the same feasibility constraints). Our reduction is based on a fundamentally new approach: we describe a mechanisms behavior indirectly only in terms of the expected value it awards bidders for certain behavior, and never directly access the allocation rule at all. Applying our new approach to revenue, we exhibit settings where our reduction holds both ways. That is, we also provide an approximation-sensitive reduction from (non-truthfully) maximizing virtual welfare to (truthfully) maximizing revenue, and therefore the two problems are computationally equivalent. With this equivalence in hand, we show that both problems are NP-hard to approximate within any polynomial factor, even for a single monotone sub modular bidder. We further demonstrate the applicability of our reduction by providing a truthful mechanism maximizing fractional max-min fairness.


symposium on the theory of computing | 2016

A duality based unified approach to Bayesian mechanism design

Yang Cai; Nikhil R. Devanur; S. Matthew Weinberg

We provide a unified view of many recent developments in Bayesian mechanism design, including the black-box reductions of Cai et. al., simple auctions for additive buyers, and posted-price mechanisms for unit-demand buyers. Additionally, we show that viewing these three previously disjoint lines of work through the same lens leads to new developments as well. First, we provide a duality framework for Bayesian mechanism design, which naturally accommodates multiple agents and arbitrary objectives/feasibility constraints. Using this, we prove that either a posted-price mechanism or the VCG auction with per-bidder entry fees achieves a constant-factor of the optimal Bayesian IC revenue whenever buyers are unit-demand or additive, unifying previous breakthroughs of Chawla et. al. and Yao, and improving both approximation ratios (from 33.75 to 24 and 69 to 8). Finally, we show that this view also leads to improved structural characterizations in the Cai et. al. framework.


economics and computation | 2015

Simple Auctions with Simple Strategies

Nikhil R. Devanur; Jamie Morgenstern; Vasilis Syrgkanis; S. Matthew Weinberg

We introduce single-bid auctions as a new format for combinatorial auctions. In single-bid auctions, each bidder submits a single real-valued bid for the right to buy items at a fixed price. Contrary to other simple auction formats, such as simultaneous or sequential single-item auctions, bidders can implement no-regret learning strategies for single-bid auctions in polynomial time. Price of anarchy bounds for correlated equilibria concepts in single-bid auctions therefore have more bite than their counterparts for auctions and equilibria for which learning is not known to be computationally tractable (or worse, known to be computationally intractable [Cai and Papadimitriou 2014; Dobzinski et al. 2015] this end, we show that for any subadditive valuations the social welfare at equilibrium is an O(log m)-approximation to the optimal social welfare, where


Sigecom Exchanges | 2011

On optimal multidimensional mechanism design

Yang Cai; Constantinos Daskalakis; S. Matthew Weinberg

m


symposium on the theory of computing | 2016

Parallel algorithms for select and partition with noisy comparisons

Mark Braverman; Jieming Mao; S. Matthew Weinberg

is the number of items. We also provide tighter approximation results for several subclasses. Our welfare guarantees hold for Nash equilibria and no-regret learning outcomes in both Bayesian and complete information settings via the smooth-mechanism framework. Of independent interest, our techniques show that in a combinatorial auction setting, efficiency guarantees of a mechanism via smoothness for a very restricted class of cardinality valuations extend, with a small degradation, to subadditive valuations, the largest complement-free class of valuations.


learning at scale | 2015

Game Theory based Peer Grading Mechanisms for MOOCs

William Wu; Constantinos Daskalakis; Nicolaas Kaashoek; Christos Tzamos; S. Matthew Weinberg

We solve the optimal multi-dimensional mechanism design problem when either the number of bidders is a constant or the number of items is a constant. In the first setting, we need that the values of each bidder for the items are i.i.d., but allow different distributions for each bidder. In the second setting, we allow the values of each bidder for the items to be arbitrarily correlated, but assume that the bidders are i.i.d. For all ε > 0, we obtain an efficient additive ε-approximation, when the value distributions are bounded, or a multiplicative (1--ε)-approximation when the value distributions are unbounded, but satisfy the Monotone Hazard Rate condition. When there is a single bidder, we generalize these results to independent but not necessarily identically distributed value distributions, and to independent regular distributions.


Sigecom Exchanges | 2015

A simple and approximately optimal mechanism for an additive buyer

Moshe Babaioff; Nicole Immorlica; Brendan Lucier; S. Matthew Weinberg

We consider the problem of finding the kth highest element in a totally ordered set of n elements (Select), and partitioning a totally ordered set into the top k and bottom n − k elements (Partition) using pairwise comparisons. Motivated by settings like peer grading or crowdsourcing, where multiple rounds of interaction are costly and queried comparisons may be inconsistent with the ground truth, we evaluate algorithms based both on their total runtime and the number of interactive rounds in three comparison models: noiseless (where the comparisons are correct), erasure (where comparisons are erased with probability 1 − γ), and noisy (where comparisons are correct with probability 1/2 + γ/2 and incorrect otherwise). We provide numerous matching upper and lower bounds in all three models. Even our results in the noiseless model, which is quite well-studied in the TCS literature on parallel algorithms, are novel.


international workshop and international workshop on approximation randomization and combinatorial optimization algorithms and techniques | 2014

Reaching Consensus via non-Bayesian Asynchronous Learning in Social Networks

Michal Feldman; Nicole Immorlica; Brendan Lucier; S. Matthew Weinberg

An efficient peer grading mechanism is proposed for grading the multitude of assignments in online courses. This novel approach is based on game theory and mechanism design. A set of assumptions and a mathematical model is ratified to simulate the dominant strategy behavior of students in a given mechanism. A benchmark function accounting for grade accuracy and workload is established to quantitatively compare effectiveness and scalability of various mechanisms. After multiple iterations of mechanisms under increasingly realistic assumptions, three are proposed: Calibration, Improved Calibration, and Deduction. The Calibration mechanism performs as predicted by game theory when tested in an online crowd-sourced experiment, but fails when students are assumed to communicate. The Improved Calibration mechanism addresses this assumption, but at the cost of more effort spent grading. The Deduction mechanism performs relatively well in the benchmark, outperforming the Calibration, Improved Calibration, traditional automated, and traditional peer grading systems. The mathematical model and benchmark opens the way for future derivative works to be performed and compared.

Collaboration


Dive into the S. Matthew Weinberg's collaboration.

Top Co-Authors

Avatar

Constantinos Daskalakis

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pablo Daniel Azar

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge