Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Maya is active.

Publication


Featured researches published by S. Maya.


Current Pharmaceutical Design | 2013

Smart Stimuli Sensitive Nanogels in Cancer Drug Delivery and Imaging: A Review

S. Maya; Bruno Sarmento; Amrita Nair; N. Sanoj Rejinold; Shantikumar V. Nair; R. Jayakumar

Nanogels are nanosized hydrogel particles formed by physical or chemical cross-linked polymer networks. The advantageous properties of nanogels related to the ability of retaining considerable amount of water, the biocompatibility of the polymers used, the ability to encapsulate and protect a large quantity of payload drugs within the nanogel matrix, the high stability in aqueous media, their stimuli responsively behavior potential, and the versatility in release drugs in a controlled manner make them very attractive for use in the area of drug delivery. The materials used for the preparation of nanogels ranged from natural polymers like ovalbumin, pullulan, hyaluronic acid, methacrylated chondroitin sulfate and chitosan, to synthetic polymers like poly (N-isopropylacrylamide), poly (Nisopropylacrylamide- co-acrylic acid) and poly (ethylene glycol)-b-poly (methacrylic acid). The porous nanogels have been finding application as anti-cancer drug and imaging agent reservoirs. Smart nanogels responding to external stimuli such as temperature, pH etc can be designed for diverse therapeutic and diagnostic applications. The nanogels have also been surface functionalized with specific ligands aiding in targeted drug delivery. This review focus on stimuli-sensitive, multi-responsive, magnetic and targeted nanogels providing a brief insight on the application of nanogels in cancer drug delivery and imaging in detail.


International Journal of Biological Macromolecules | 2012

Efficacy of tetracycline encapsulated O-carboxymethyl chitosan nanoparticles against intracellular infections of Staphylococcus aureus

S. Maya; S.Indulekha; V. Sukhithasri; K.T. Smitha; Shantikumar V. Nair; R. Jayakumar; Raja Biswas

Intracellular bacterial infections are recurrent, persistent and are difficult to treat because of poor penetration and limited availability of antibiotics within macrophages and epithelial cells. We developed biocompatible, 200 nm sized tetracycline encapsulated O-carboxymethyl chitosan nanoparticles (Tet-O-CMC Nps) via ionic gelation for its sustained delivery of Tet into cells. S. aureus binds and aggregates with Tet-O-CMC Nps increasing drug concentrations at the infection site. Tet-O-CMC Nps were sixfold more effective in killing intracellular S. aureus compared to Tet alone in HEK-293 and differentiated THP1 macrophage cells proving it to be an efficient nanomedicine to treat intracellular S. aureus infections.


Journal of Biomaterials Science-polymer Edition | 2012

Curcumin-Loaded N,O-Carboxymethyl Chitosan Nanoparticles for Cancer Drug Delivery

A. Anitha; S. Maya; N. Deepa; K.P. Chennazhi; Shantikumar V. Nair; R. Jayakumar

Abstract Chitosan (CS) and its carboxymethyl derivatives are smart biopolymers that are non-toxic, biocompatible and biodegradable, and, hence, suitable for various biomedical applications, such as drug delivery, gene therapy and tissue engineering. Curcumin is a major chemotherapeutic agent with antioxidant, anti-inflammatory, anti-proliferative, anticancer and antimicrobial effects. However, the potential of curcumin as a chemotherapeutic agent is limited by its hydrophobicity and poor bioavailability. In this work, we developed a nanoformulation of curcumin in a carboxymethyl chitosan (CMC) derivative, N,O-carboxymethyl chitosan (N,O-CMC). The curcumin-loaded N,O-CMC (curcumin-N,O-CMC) nanoparticles were characterized using DLS, AFM, SEM, FT-IR and XRD. DLS studies revealed nanoparticles with a mean diameter of 150 ± 30 nm. AFM and SEM confirmed that the particles have a spherical morphology within the size range of 150 ± 30 nm. Curcumin was entrapped with in N,O-CMC nanopartcles with an efficiency of 80%. The in vitro drug-release profile was studied at different pH (7.4 and 4.5) at 37°C for different incubation periods with and without lysozyme. Cytotoxicity studies using MTT assay indicated that curcumin-N,O-CMC nanoparticles showed specific toxicity towards cancer cells and non-toxicity to normal cells. Cellular uptake of curcumin-N,O-CMC nanoparticles was analyzed by fluorescence microscopy and was reconfirmed by flow cytometry. Overall, these results indicate that like previously reported curcumin loaded O-CMC nanoparticles, N,O-CMC will also be an efficient nanocarrier for delivering curcumin to cancer cells.


Carbohydrate Polymers | 2013

Cetuximab conjugated O-carboxymethyl chitosan nanoparticles for targeting EGFR overexpressing cancer cells.

S. Maya; Lekshmi G. Kumar; Bruno Sarmento; N. Sanoj Rejinold; Deepthy Menon; Shantikumar V. Nair; R. Jayakumar

Nanoparticle mediated delivery of antineoplastic agents, functionalized with monoclonal antibodies has achieved extraordinary potential in cancer therapy. The objective of this study was to develop a drug delivery system comprising O-carboxymethyl chitosan (O-CMC) nanoparticles, surface-conjugated with Cetuximab (Cet) for targeted delivery of paclitaxel (PTXL) to Epidermal Growth Factor Receptor (EGFR) over-expressing cancer cells. Nanoparticles around 180±35nm and negatively charged were prepared through simple ionic gelation technique. The alamar blue assay indicated that these targeted nanoparticles displayed a superior anticancer activity compared to non-targeted nanoparticles. The nanoformulation triggered enhanced cell death (confirmed by flow cytometry) due to its higher cellular uptake. The selective uptake of Cet-PTXL-O-CMC nanoparticles by EGFR +VE cancer cells (A549, A431 and SKBR3) compared to EGFR -VE MIAPaCa-2 cells confirms the active targeting and delivery of PTXL via the targeted nanomedicine. Cet-PTXL-O-CMC nanoparticles can be used a promising candidate for the targeted therapy of EGFR over expressing cancers.


Wiley Interdisciplinary Reviews-nanomedicine and Nanobiotechnology | 2015

Nanogels for delivery, imaging and therapy.

Amal J. Sivaram; P. Rajitha; S. Maya; R. Jayakumar; M. Sabitha

Nanogels are hydrogels having size in nanoregime, which is composed of cross-linked polymer networks. The advantages of nanogels include stimuli-responsive nature, easy drug loading, and higher drug-loading capacity, physical stability, versatility in design, stability of entrapped drug, and controlled release of the anti-inflammatory, antimicrobial, protein, peptide and anticancer drugs. Stimuli-responsive nature of nanogel is of particular importance in anticancer and anti-inflammatory drug delivery, as cancer and inflammation are associated with acidic pH, heat generation, and change in ionic content. Nanogels composed of muco-adhesive polymers provide prolonged residence time and increase the ocular availability of loaded drugs. By forming suitably sized complex with proteins or by acting as artificial chaperones, they thus help to keep the proteins and enzymes in proper confirmation necessary for exerting biological activity; nanogels can increase the stability and activity of protein/peptide drugs. Better drug penetrations achieved by prolonged contact with skin contribute much in transdermal drug delivery. When it comes to cancer drug delivery, the presence of multiple interactive functional groups in nanogels different targeting agents can be conjugated for delivery of the selective drugs. This review focuses on applications of nanogels in cancer drug delivery and imaging, anti-inflammatory, anti-psoriatic, transdermal, ocular and protein/peptide drug delivery and therapy.


International Journal of Biological Macromolecules | 2015

Delivery of rifampicin-chitin nanoparticles into the intracellular compartment of polymorphonuclear leukocytes.

K.T. Smitha; N. Nisha; S. Maya; Raja Biswas; R. Jayakumar

Polymorphonuclear leukocytes (PMNs) provide the primary host defence against invading pathogens by producing reactive oxygen species (ROS) and microbicidal products. However, few pathogens can survive for a prolonged period of time within the PMNs. Additionally their intracellular lifestyle within the PMNs protect themselves from the additional lethal action of host immune systems such as antibodies and complements. Antibiotic delivery into the intracellular compartments of PMNs is a major challenge in the field of infectious diseases. In order to deliver antibiotics within the PMNs and for the better treatment of intracellular bacterial infections we synthesized rifampicin (RIF) loaded amorphous chitin nanoparticles (RIF-ACNPs) of 350±50 nm in diameter. RIF-ACNPs nanoparticles are found to be non-hemolytic and non-toxic against a variety of host cells. The release of rifampicin from the prepared nanoparticles was ∼60% in 24 h, followed by a sustained pattern till 72 h. The RIF-ACNPs nanoparticles showed 5-6 fold enhanced delivery of RIF into the intracellular compartments of PMNs. The RIF-ACNPs showed anti-microbial activity against Escherichia coli, Staphylococcus aureus and a variety of other bacteria. In summary, our results suggest that RIF-ACNPs could be used to treat a variety of intracellular bacterial infections.


International Journal of Biological Macromolecules | 2014

Chitosan cross-linked docetaxel loaded EGF receptor targeted nanoparticles for lung cancer cells.

S. Maya; Bruno Sarmento; Vinoth-Kumar Lakshmanan; Deepthy Menon; Vítor Seabra; R. Jayakumar

Lung cancer, associated with the up-regulated epidermal growth factor receptor (EGFR) led to the development of EGFR targeted anticancer therapeutics. The biopolymeric nanoparticles form an outstanding system for the targeted delivery of therapeutic agents. The present work evaluated the in vitro effects of chitosan cross-linked γ-poly(glutamic acid) (γ-PGA) nanoparticles (Nps) loaded with docetaxel (DTXL) and decorated with Cetuximab (CET), targeted to EGFR over-expressing non-small-cell-lung-cancer (NSCLC) cells (A549). CET-DTXL-γ-PGA Nps was prepared by ionic gelation and CET conjugation via EDC/NHS chemistry. EGFR specificity of targeted Nps was confirmed by the higher uptake rates of EGFR +ve A549 cells compared to that of EGFR -ve cells (NIH3T3). The cytotoxicity of Nps quantified using cell based (MTT/LDH) and flowcytometry (Cell-cycle analysis, Annexin V/PI and JC-1) assays showed superior antiproliferative activity of CET-DTXL-γ-PGA Nps over DTXL-γ-PGA Nps. The A549 cells treated with CET-DTXL-γ-PGA NPs underwent a G2/M phase cell cycle arrest followed by reduction in mitochondrial membrane potential of A549 cells, inducing apoptosis and necrosis resulting in enhanced cancer cell death. CET-DTXL-γ-PGA Nps exhibited enhanced cellular internalization and therapeutic activity, by actively targeting EGFR on NSCLC cells and hence could be an effective alternative to non-specific, conventional chemotherapy by increasing its efficiency by many folds.


RSC Advances | 2014

Redox-responsive cystamine conjugated chitin–hyaluronic acid composite nanogels

N. Ashwinkumar; S. Maya; R. Jayakumar

Nanoscale carriers were developed to overcome the challenging barriers for the targeted intracellular delivery of chemotherapeutic agents, in particular within tumors. We demonstrate redox responsive cystamine (Cys) conjugated hyaluronic acid (HA)–chitin (CNG) nanogels for the intracellular delivery of doxorubicin (DOX) within colon cancer cells. Chitin, having a slow degrading property, could make HA to slowly degrade, thus protecting the DOX from a sudden burst release, and HA, being a ligand for the CD44 receptor, are over expressed in colon cancer cells (HT-29). 150–200 nm sized DOX-HA-CNGs and DOX-HA-Cys-CNGs were developed and characterized by DLS, Zeta, TG/DTA, FT-IR, EDAX and rheological techniques. The composite nanogel preparations proved to be safe for intravenous administration because they were non-hemolytic and did not interfere with the coagulation cascade. Flow cytometric and fluorescent microscopic analysis proved the specific internalization of DOX-HA-CNGs within HT-29 cells (CD-44 +ve). MTT assay revealed the superior anti-proliferative activity of DOX-HA-Cys-CNGs in CD-44 +ve HT-29 cells compared to that in CD-44 −ve IEC-6 cells. Thus, HA-Cys-CNGs are proven to be a better carrier for the selective, redox responsive and intracellular delivery of DOX.


Wiley Interdisciplinary Reviews-nanomedicine and Nanobiotechnology | 2016

Combinatorial nanomedicines for colon cancer therapy.

A. Anitha; S. Maya; Amal J. Sivaram; Ullas Mony; R. Jayakumar

Colon cancer is one of the major causes of cancer deaths worldwide. Even after surgical resection and aggressive chemotherapy, 50% of colorectal carcinoma patients develop recurrent disease. Thus, the rationale of developing new therapeutic approaches to improve the current chemotherapeutic regimen would be highly recommended. There are reports on the effectiveness of combination chemotherapy in colon cancer and it has been practiced in clinics for long time. These approaches are associated with toxic side effects. Later, the drug delivery research had shown the potential of nanoencapsulation techniques and active targeting as an effective method to improve the effectiveness of chemotherapy with less toxicity. This current focus article provides a brief analysis of the ongoing research in the colon cancer area using the combinatorial nanomedicines and its outcome.


Carbohydrate Polymers | 2011

Efficient water soluble O-carboxymethyl chitosan nanocarrier for the delivery of curcumin to cancer cells

A. Anitha; S. Maya; N. Deepa; K.P. Chennazhi; Shantikumar V. Nair; Hiroshi Tamura; R. Jayakumar

Collaboration


Dive into the S. Maya's collaboration.

Top Co-Authors

Avatar

R. Jayakumar

Amrita Institute of Medical Sciences and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deepthy Menon

Amrita Vishwa Vidyapeetham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Anitha

Amrita Institute of Medical Sciences and Research Centre

View shared research outputs
Top Co-Authors

Avatar

N. Sanoj Rejinold

Amrita Institute of Medical Sciences and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Raja Biswas

Amrita Institute of Medical Sciences and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Vinoth-Kumar Lakshmanan

Amrita Institute of Medical Sciences and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Amal J. Sivaram

Amrita Institute of Medical Sciences and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Amrita Nair

Amrita Institute of Medical Sciences and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge