S. Nava
University of Florence
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by S. Nava.
Journal of Geophysical Research | 2008
C. L. McConnell; Eleanor J. Highwood; Hugh Coe; P. Formenti; Bruce E. Anderson; S. Osborne; S. Nava; Karine Desboeufs; G. Chen; M. A. J. Harrison
[1] NorthAfricandustisimportantforclimatethroughitsdirectradiativeeffectonsolarand terrestrial radiation and its role in the biogeochemical system. The Dust Outflow and Deposition to the Ocean project (DODO) aimed to characterize the physical and optical properties of airborne North African dust in two seasons and to use these observations to constrainmodelsimulations,withtheultimateaimofbeingabletoquantifythedepositionof iron to the North Atlantic Ocean. The in situ properties of dust from airborne campaigns measured during February and August 2006, based at Dakar, Senegal, are presented here. Average values of the single scattering albedo (0.99, 0.98), mass specific extinction (0.85 m 2 g � 1 ,1 .14 m 2 g � 1 ), asymmetry parameter (0.68, 0.68), and refractive index (1.53–0.0005i, 1.53–0.0014i) for the accumulation mode were found to differ by varying degrees between the dry and wet season, respectively. It is hypothesized that these differences are due to different source regions and transport processes which also differ between the DODO campaigns. Elemental ratios of Ca/Al were found to differ between the dry and wet season (1.1 and 0.5, respectively). Differences in vertical profiles are found between seasons and between land and ocean locations and reflect the different dynamics of the seasons. Using measurements of the coarse mode size distribution and illustrative Mie calculations, the optical properties are found to be very sensitive to the presence and amount of coarse mode of mineral dust, and the importance of accurate measurements of the coarse mode of dust is highlighted.
Journal of Aerosol Science | 2003
A. D'Alessandro; F. Lucarelli; P.A. Mandò; G. Marcazzan; S. Nava; P. Prati; G. Valli; R. Vecchi; A. Zucchiatti
The composition of particulate matter in the atmosphere of four major italian towns (Florence, Genoa, Milan and Naples) has been studied with hourly resolution by means of ion beam analysis (IBA) techniques and statistical methods. The aerosol has been collected simultaneously in the four towns during the first weeks of year 2001, by two-stage continuous streaker samplers, which separate and collect the PM10 particulate matter in two fractions. The hourly concentrations in air of about 20 elements have been extracted in the fine and coarse fractions of PM10 by particle induced X-ray (and gamma-ray) emission, PIXE (and PIGE), analysis of about 2700 hourly samples. The coupled use of streaker samplers and IBA techniques made distinguishable time patterns typical of urban environments as well as fast and occasional episodes. Absolute principal component factor analysis (APCFA) and other statistical approaches have been used to obtain a sintetic apportionment of the sources of particulate matter.
Science of The Total Environment | 2010
Fulvio Amato; S. Nava; F. Lucarelli; Xavier Querol; Andrés Alastuey; J. M. Baldasano; Marco Pandolfi
Compliance with air quality standards requires control of source emissions: fine exhaust particles are already subject to regulation but vehicle fleets increase whilst the non-exhaust emissions are totally uncontrolled. Emission inventories are scarce despite their suitability for researchers and regulating agencies for managing air quality and PM reduction measures. Only few countries in Europe proposed street cleaning as a possible control measure, but its effectiveness is still far to be determined. This study offers first estimates of Real-world Emission Factors for PM(10) and brake-wear elements and the effect on PM(10) concentrations induced by intense street cleaning trials. A straightforward campaign was carried out in the city of Barcelona with hourly elemental composition of fine and coarse PM to detect any short-term effect of street cleaning on specific tracers of non-exhaust emissions. Samples were analyzed by Particle Induced X-Ray Emission. Real-world Emission Factor for PM(10) averaged for the local fleet resulted to be 97 mg veh(-1) km(-1). When compared to other European studies, our EF resulted higher than what found in UK, Germany, Switzerland and Austria but lower than Scandinavian countries. For brake-related elements, total EFs were estimated, accounting for the sum of direct and resuspension emissions, in 7400, 486, 106 and 86 microg veh(-1) km(-1), respectively for Fe, Cu, Sn and Sb. In PM(2.5)Fe and Cu emission factors were respectively 4884 and 306 microg veh(-1) km(-1). Intense street cleaning trials evidenced a PM(10) reduction at kerbside of 3 microg m(-3) (mean daily levels of 54 microg m(-3)), with respect to reference stations. It is important to remark that such benefit could only be detected in small time-integration periods (12:00-18:00) since in daily values this benefit was not noticed. Hourly PM elemental monitoring allowed the identification of mineral and brake-related metallic particles as those responsible of the PM(10) reduction.
Science of The Total Environment | 2010
S. Nava; F. Becherini; Adriana Bernardi; Alessandra Bonazza; M. Chiari; I. García-Orellana; F. Lucarelli; N. Ludwig; A. Migliori; Cristina Sabbioni; Roberto Udisti; G. Valli; R. Vecchi
An example of an integrated approach to assess air pollution threats to cultural heritage in a semi-confined environment is presented in this work, where the monitoring campaign carried out at the Michelozzos Courtyard (in Palazzo Vecchio, Florence, Italy) is used as a case study. A wide research project was carried out, with the main aim of obtaining the first quantitative data on air quality and microclimate conditions inside the Courtyard, and, if possible, identifying the main causes of degradation and suggesting appropriate conservation strategies. The investigation adopted a holistic approach involving thermographic measurements on the wall paintings, microclimatic analysis, gaseous pollutant monitoring, atmospheric particles characterisation and dry deposition compositional analysis. Attention was focused on the wall painting depicting the city of Hall because of its anomalous and critical conservation conditions, which are visible at a glance, due to the contrast between a wide darker zone around the central subject of the painting and external lighter areas.
Science of The Total Environment | 2014
Adewale M. Taiwo; David C. S. Beddows; G. Calzolai; Roy M. Harrison; F. Lucarelli; S. Nava; Zongbo Shi; G. Valli; R. Vecchi
In this study, the Multilinear Engine (ME-2) receptor model was applied to speciated particulate matter concentration data collected with two different measuring instruments upwind and downwind of a steelworks complex in Port Talbot, South Wales, United Kingdom. Hourly and daily PM samples were collected with Streaker and Partisol samplers, respectively, during a one month sampling campaign between April 18 and May 16, 2012. Daily samples (PM10, PM2.5, PM2.5-10) were analysed for trace metals and water-soluble ions using standard procedures. Hourly samples (PM2.5 and PM2.5-10) were assayed for 22 elements by Particle Induced X-ray Emission (PIXE). PM10 data analysis using ME-2 resolved 6 factors from both datasets identifying different steel processing units including emissions from the blast furnaces (BF), the basic oxygen furnace steelmaking plant (BOS), the coke-making plant, and the sinter plant. Steelworks emissions were the main contributors to PM10 accounting for 45% of the mass when including also secondary aerosol. The blast furnaces were the largest emitter of primary PM10 in the study area, explaining about one-fifth of the mass. Other source contributions to PM10 were from marine aerosol (28%), traffic (16%), and background aerosol (11%). ME-2 analysis was also performed on daily PM2.5 and PM2.5-10 data resolving 7 and 6 factors, respectively. The largest contributions to PM2.5-10 were from marine aerosol (30%) and blast furnace emissions (28%). Secondary components explained one-half of PM2.5 mass. The influence of steelworks sources on ambient particulate matter at Port Talbot was distinguishable for several separate processing sections within the steelworks in all PM fractions.
Journal of Environmental Monitoring | 2011
A.M. Sánchez de la Campa; J. de la Rosa; Yolanda González-Castanedo; Rocío Fernández-Camacho; Andrés Alastuey; Xavier Querol; Ariel F. Stein; Juan-Luis Ramos; Sergio Rodríguez; I. García Orellana; S. Nava
A long-term series (2001-2008) of chemical analysis of atmospheric particulate matter (PM(10) and PM(2.5)) collected in the city of Huelva (SW Spain) is considered in this study. The impact of emission plumes from one of the largest Cu-smelters in the world on air quality in the city of Huelva is evidenced by the high daily and hourly levels of As, other potentially toxic elements (e.g. Cu, Zn, Cd, Se, Bi, and Pb) in particulate matter, as well as the high levels of some gaseous pollutants (NO(2) and SO(2)). Mean arsenic levels in the PM10 fraction were higher than the target value set by European Directive 2004/107/EC (6 ngAs m(-3)) for 1(st) January 2013. Hourly peak concentrations of As and other metals and elements (Zn, Cu, P and Se) analyzed by PIXE can reach maximum hourly levels as high as 326 ngAs m(-3), 506 ngZn m(-3), 345 ngCu m(-3), 778 ngP m(-3) and 12 ngSe m(-3). The contribution of Cu-smelter emissions to ambient PM is quantified on an annual basis in 2.0-6.7 µg m(-3) and 1.8-4.2 µg m(-3) for PM(10) and PM(2.5), respectively. High resolution outputs of the HYSPLIT dispersion model show the geographical distribution of the As ambient levels into the emission plume, suggesting that the working regime of the Cu-smelter factory and the sea breeze circulation are the main factors controlling the impact of the Cu-smelter on the air quality of the city. The results of this work improve our understanding of the behaviour of industrial emission plumes and their impact on air quality of a city, where the population might be exposed to very high ambient concentrations of toxic metals during a few hours.
Science of The Total Environment | 2015
S. Nava; F. Lucarelli; Fulvio Amato; Silvia Becagli; G. Calzolai; M. Chiari; M. Giannoni; Rita Traversi; Roberto Udisti
Biomass burning (BB) is a significant source of particulate matter (PM) in many parts of the world. Whereas numerous studies demonstrate the relevance of BB emissions in central and northern Europe, the quantification of this source has been assessed only in few cities in southern European countries. In this work, the application of Positive Matrix Factorisation (PMF) allowed a clear identification and quantification of an unexpected very high biomass burning contribution in Tuscany (central Italy), in the most polluted site of the PATOS project. In this urban background site, BB accounted for 37% of the mass of PM10 (particulate matter with aerodynamic diameter<10 μm) as annual average, and more than 50% during winter, being the main cause of all the PM10 limit exceedances. Due to the chemical complexity of BB emissions, an accurate assessment of this source contribution is not always easily achievable using just a single tracer. The present work takes advantage of the combination of a long-term daily data-set, characterized by an extended chemical speciation, with a short-term high time resolution (1-hour) and size-segregated data-set, obtained by PIXE analyses of streaker samples. The hourly time pattern of the BB source, characterised by a periodic behaviour with peaks starting at about 6 p.m. and lasting all the evening-night, and its strong seasonality, with higher values in the winter period, clearly confirmed the hypothesis of a domestic heating source (also excluding important contributions from wildfires and agricultural wastes burning).
Science of The Total Environment | 2017
Célia Alves; Ana Vicente; Danilo Custódio; Mário Cerqueira; Teresa Nunes; Casimiro Pio; F. Lucarelli; G. Calzolai; S. Nava; Evangelia Diapouli; Konstantinos Eleftheriadis; Xavier Querol; Benjamin A. Musa Bandowe
Atmospheric particulate matter (PM2.5) samples were collected over two one month periods during winter and summer in three Southern European cities (Oporto - traffic site, Florence - urban background, Athens - suburban). Concentrations of 27 polycyclic aromatic hydrocarbons (PAHs), 15 nitro-PAHs (NPAHs), 15 oxygenated-PAHs (OPAHs) and 4 azaarenes (AZAs) were determined. On average, the winter-summer concentrations of ΣPAHs were 16.3-5.60, 7.75-3.02 and 3.44-0.658ngm-3 in Oporto, Florence and Athens, respectively. The corresponding concentrations of ΣNPAHs were 15.8-9.15, 10.9-3.36 and 15.9-2.73ngm-3, whilst ΣOPAHs varied in the ranges 41.8-19.0, 11.3-3.10 and 12.6-0.704ngm-3. Concentrations of ΣAZAs were always below 0.5ngm-3. Irrespective of the city, the dominant PAHs were benzo[b+j+k]fluoranthene, retene, benzo[ghi]perylene and indeno[1,2,3-cd]pyrene. The most abundant OPAH in all cities was 1,8-naphthalic anhydride, whereas 5-nitroacenaphthene was the prevailing NPAH. The ΣOPAHs/ΣPAHs and ΣNPAHs/ΣPAHs were higher in summer than in winter, suggesting increasing formation of derivatives by photochemical degradation of PAHs. Molecular diagnostic ratios suggested that, after traffic, biomass burning was the dominant emission source. Apart from being influenced by seasonal sources, the marked differences between winter and summer may indicate that these diagnostic ratios are particularly sensitive to photodegradation, and thus should be applied and interpreted cautiously. The lifetime excess cancer risk from inhalation was, in part, attributable to PAH derivatives, acclaiming the need to include these compounds in regular monitoring programmes. On average, 206, 88 and 26 cancer cases per million people were estimated, by the World Health Organisation method, for the traffic-impacted, urban background and suburban atmospheres of Oporto, Florence and Athens, respectively.
Journal of The Air & Waste Management Association | 2004
F. Lucarelli; P.A. Mandò; S. Nava; P. Prati; Alessandro Zucchiatti
Abstract An extensive investigation was carried out for the characterisation of the air particulate composition in Florence. The aim was to determine the aerosol elemental concentrations, as well as to identify pollution sources. For our investigation, the external Particle-Induced X-Ray Emission–Particle-Induced γ-Ray Emission beam facility of the Istituto Nazionale di Fisica Nucleare, Van de Graaff accelerator at the Physics Department of the Florence University was used. We report the results of the analysis of a long temporal series (approximately 1 yr) of PM10 particulate samples, collected on Millipore filters on a daily basis in three different sites (characterised by different urban settings). Daily concentrations of more than 20 elements were detected. The long sampling period (approximately 1 yr) allowed a comparison with the air quality recommended values and the identification of seasonal variations. Four main sources (traffic, oil-combustion, soil-dust, and wind transported sea-salt) were extracted with the help of Principal Component Analysis (PCA). An absolute PCA showed traffic to be the major source both in the high traffic site and in the urban background site.
Tellus B | 2011
M. Chiari; Javier Crespo; Nuria Galindo; F. Lucarelli; S. Nava; Eduardo Yubero
A set of PM2.5 samples (n = 121) collected at an urban background location in Elche (in southeastern Spain) from December 2004 to November 2005 was analysed by particle-induced X-ray emission (PIXE) and ion chromatography in order to provide source identification and potential source locations. Positive matrix factorization (PMF) was used to estimate source profiles and their mass contributions. The PMF modelling identified six sources: aged sea salt (9.2%), ammonium sulphate (40.4%), soil dust related to Saharan outbreaks (13.0%), traffic 1 (18.9%), nitrate aerosol and traffic 2 (5.5%) and local soil dust (6.0%). Potential source contribution function (PSCF) was then used to identify potential source locations. Scarce influence from Mediterranean and European regions was found with the exception of the nitrate source, whose potential source areas were northern Italy and eastern France. Primary source regions for the remaining components (ammonium sulphate, soil dust-related to Saharan outbreaks and aged sea salt) with known mass contributions due to long-range transport have a marked Atlantic and North African location, primarily between Morocco and northwestern Algeria.