Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Nijsten is active.

Publication


Featured researches published by S. Nijsten.


Radiotherapy and Oncology | 2008

A literature review of electronic portal imaging for radiotherapy dosimetry

Wouter van Elmpt; Leah N. McDermott; S. Nijsten; Markus Wendling; Philippe Lambin; Ben J. Mijnheer

Electronic portal imaging devices (EPIDs) have been the preferred tools for verification of patient positioning for radiotherapy in recent decades. Since EPID images contain dose information, many groups have investigated their use for radiotherapy dose measurement. With the introduction of the amorphous-silicon EPIDs, the interest in EPID dosimetry has been accelerated because of the favourable characteristics such as fast image acquisition, high resolution, digital format, and potential for in vivo measurements and 3D dose verification. As a result, the number of publications dealing with EPID dosimetry has increased considerably over the past approximately 15 years. The purpose of this paper was to review the information provided in these publications. Information available in the literature included dosimetric characteristics and calibration procedures of various types of EPIDs, strategies to use EPIDs for dose verification, clinical approaches to EPID dosimetry, ranging from point dose to full 3D dose distribution verification, and current clinical experience. Quality control of a linear accelerator, pre-treatment dose verification and in vivo dosimetry using EPIDs are now routinely used in a growing number of clinics. The use of EPIDs for dosimetry purposes has matured and is now a reliable and accurate dose verification method that can be used in a large number of situations. Methods to integrate 3D in vivo dosimetry and image-guided radiotherapy (IGRT) procedures, such as the use of kV or MV cone-beam CT, are under development. It has been shown that EPID dosimetry can play an integral role in the total chain of verification procedures that are implemented in a radiotherapy department. It provides a safety net for simple to advanced treatments, as well as a full account of the dose delivered. Despite these favourable characteristics and the vast range of publications on the subject, there is still a lack of commercially available solutions for EPID dosimetry. As strategies evolve and commercial products become available, EPID dosimetry has the potential to become an accurate and efficient means of large-scale patient-specific IMRT dose verification for any radiotherapy department.


Medical Physics | 2007

A global calibration model for a-Si EPIDs used for transit dosimetry

S. Nijsten; W. Van Elmpt; Maria Jacobs; Ben J. Mijnheer; A. Dekker; P. Lambin; A. Minken

Electronic portal imaging devices (EPIDs) are not only applied for patient setup verification and detection of organ motion but are also increasingly used for dosimetric verification. The aim of our work is to obtain accurate dose distributions from a commercially available amorphous silicon (a-Si) EPID for transit dosimetry applications. For that purpose, a global calibration model was developed, which includes a correction procedure for ghosting effects, field size dependence and energy dependence of the a-Si EPID response. In addition, the long-term stability and additional buildup material for this type of EPID were determined. Differences in EPID response due to photon energy spectrum changes have been measured for different absorber thicknesses and field sizes, yielding off-axis spectrum correction factors based on transmission measurements. Dose measurements performed with an ionization chamber in a water tank were used as reference data, and the accuracy of the dosimetric calibration model was determined for a large range of treatment conditions. Gamma values using 3% as dose-difference criterion and 3mm as distance-to-agreement criterion were used for evaluation. The field size dependence of the response could be corrected by a single kernel, fulfilling the gamma evaluation criteria in case of virtual wedges and intensity modulated radiation therapy fields. Differences in energy spectrum response amounted up to 30%-40%, but could be reduced to less than 3% using our correction model. For different treatment fields and (in)homogeneous phantoms, transit dose distributions satisfied in almost all situations the gamma criteria. We have shown that a-Si EPIDs can be accurately calibrated for transit dosimetry purposes.


Medical Physics | 2006

A Monte Carlo based three-dimensional dose reconstruction method derived from portal dose images

Wouter van Elmpt; S. Nijsten; Robert F. H. Schiffeleers; Andre Dekker; Ben J. Mijnheer; Philippe Lambin; A. Minken

The verification of intensity-modulated radiation therapy (IMRT) is necessary for adequate quality control of the treatment. Pretreatment verification may trace the possible differences between the planned dose and the actual dose delivered to the patient. To estimate the impact of differences between planned and delivered photon beams, a three-dimensional (3-D) dose verification method has been developed that reconstructs the dose inside a phantom. The pretreatment procedure is based on portal dose images measured with an electronic portal imaging device (EPID) of the separate beams, without the phantom in the beam and a 3-D dose calculation engine based on the Monte Carlo calculation. Measured gray scale portal images are converted into portal dose images. From these images the lateral scattered dose in the EPID is subtracted and the image is converted into energy fluence. Subsequently, a phase-space distribution is sampled from the energy fluence and a 3-D dose calculation in a phantom is started based on a Monte Carlo dose engine. The reconstruction model is compared to film and ionization chamber measurements for various field sizes. The reconstruction algorithm is also tested for an IMRT plan using 10 MV photons delivered to a phantom and measured using films at several depths in the phantom. Depth dose curves for both 6 and 10 MV photons are reconstructed with a maximum error generally smaller than 1% at depths larger than the buildup region, and smaller than 2% for the off-axis profiles, excluding the penumbra region. The absolute dose values are reconstructed to within 1.5% for square field sizes ranging from 5 to 20 cm width. For the IMRT plan, the dose was reconstructed and compared to the dose distribution with film using the gamma evaluation, with a 3% and 3 mm criterion. 99% of the pixels inside the irradiated field had a gamma value smaller than one. The absolute dose at the isocenter agreed to within 1% with the dose measured with an ionization chamber. It can be concluded that our new dose reconstruction algorithm is able to reconstruct the 3-D dose distribution in phantoms with a high accuracy. This result is obtained by combining portal dose images measured prior to treatment with an accurate dose calculation engine.


Medical Physics | 2006

Comparison of ghosting effects for three commercial a-Si EPIDs

Leah N. McDermott; S. Nijsten; J.J. Sonke; Mike Partridge; M. van Herk; B.J. Mijnheer

Many studies have reported dosimetric characteristics of amorphous silicon electronic portal imaging devices (EPIDs). Some studies ascribed a non-linear signal to gain ghosting and image lag. Other reports, however, state the effect is negligible. This study compares the signal-to-monitor unit (MU) ratio for three different brands of EPID systems. The signal was measured for a wide range of monitor units (5-1000), dose-rates, and beam energies. All EPIDs exhibited a relative under-response for beams of few MUs; giving 4 to 10% lower signal-to-MU ratios relative to that of 1000 MUs. This under-response is consistent with ghosting effects due to charge trapping.


Medical Physics | 2005

Experimental verification of a portal dose prediction model.

W. Van Elmpt; S. Nijsten; Ben J. Mijnheer; A. Minken

Electronic portal imaging devices (EPIDs) can be used to measure a two-dimensional (2D) dose distribution behind a patient, thus allowing dosimetric treatment verification. For this purpose we experimentally assessed the accuracy of a 2D portal dose prediction model based on pencil beam scatter kernels. A straightforward derivation of these pencil beam scatter kernels for portal dose prediction models is presented based on phantom measurements. The model is able to predict the 2D portal dose image (PDI) behind a patient, based on a PDI without the patient in the beam in combination with the radiological thickness of the patient, which requires in addition a PDI with the patient in the beam. To assess the accuracy of portal dose and radiological thickness values obtained with our model, various types of homogeneous as well as inhomogeneous phantoms were irradiated with a 6 MV photon beam. With our model we are able to predict a PDI with an accuracy better than 2% (mean difference) if the radiological thickness of the object in the beam is symmetrically situated around the isocenter. For other situations deviations up to 3% are observed for a homogeneous phantom with a radiological thickness of 17 cm and a 9 cm shift of the midplane-to-detector distance. The model can extract the radiological thickness within 7 mm (maximum difference) of the actual radiological thickness if the object is symmetrically distributed around the isocenter plane. This difference in radiological thickness is related to a primary portal dose difference of 3%. It can be concluded that our model can be used as an easy and accurate tool for the 2D verification of patient treatments by comparing predicted and measured PDIs. The model is also able to extract the primary portal dose with a high accuracy, which can be used as the input for a 3D dose reconstruction method based on back-projection.


Radiotherapy and Oncology | 2013

Benefits of a clinical data warehouse with data mining tools to collect data for a radiotherapy trial.

Erik Roelofs; Lucas Persoon; S. Nijsten; Wolfgang Wiessler; Andre Dekker; Philippe Lambin

INTRODUCTION Collecting trial data in a medical environment is at present mostly performed manually and therefore time-consuming, prone to errors and often incomplete with the complex data considered. Faster and more accurate methods are needed to improve the data quality and to shorten data collection times where information is often scattered over multiple data sources. The purpose of this study is to investigate the possible benefit of modern data warehouse technology in the radiation oncology field. MATERIAL AND METHODS In this study, a Computer Aided Theragnostics (CAT) data warehouse combined with automated tools for feature extraction was benchmarked against the regular manual data-collection processes. Two sets of clinical parameters were compiled for non-small cell lung cancer (NSCLC) and rectal cancer, using 27 patients per disease. Data collection times and inconsistencies were compared between the manual and the automated extraction method. RESULTS The average time per case to collect the NSCLC data manually was 10.4 ± 2.1 min and 4.3 ± 1.1 min when using the automated method (p<0.001). For rectal cancer, these times were 13.5 ± 4.1 and 6.8 ± 2.4 min, respectively (p<0.001). In 3.2% of the data collected for NSCLC and 5.3% for rectal cancer, there was a discrepancy between the manual and automated method. CONCLUSIONS Aggregating multiple data sources in a data warehouse combined with tools for extraction of relevant parameters is beneficial for data collection times and offers the ability to improve data quality. The initial investments in digitizing the data are expected to be compensated due to the flexibility of the data analysis. Furthermore, successive investigations can easily select trial candidates and extract new parameters from the existing databases.


Medical Physics | 2007

Treatment verification in the presence of inhomogeneities using EPID‐based three‐dimensional dose reconstruction

Wouter van Elmpt; S. Nijsten; Andre Dekker; Ben J. Mijnheer; Philippe Lambin

Treatment verification is a prerequisite for the verification of complex treatments, checking both the treatment planning process and the actual beam delivery. Pretreatment verification can detect errors introduced by the treatment planning system (TPS) or differences between planned and delivered dose distributions. In a previous paper we described the reconstruction of three-dimensional (3-D) dose distributions in homogeneous phantoms using an in-house developed model based on the beams delivered by the linear accelerator measured with an amorphous silicon electronic portal imaging device (EPID), and a dose calculation engine using the Monte Carlo code XVMC. The aim of the present study is to extend the method to situations in which tissue inhomogeneities are present and to make a comparison with the dose distributions calculated by the TPS. Dose distributions in inhomogeneous phantoms, calculated using the fast-Fourier transform convolution (FFTC) and multigrid superposition (MGS) algorithms present in the TPS, were verified using the EPID-based dose reconstruction method and compared to film and ionization chamber measurements. Differences between dose distributions were evaluated using the γ-evaluation method (3%∕3mm) and expressed as a mean γ and the percentage of points with γ>1 (Pγ>1). For rectangular inhomogeneous phantoms containing a low-density region, the differences between film and reconstructed dose distributions were smaller than 3%. In low-density regions there was an overestimation of the planned dose using the FFTC and MGS algorithms of the TPS up to 20% and 8%, respectively, for a 10MV photon beam and a 3×3cm2 field. For lower energies and larger fields (6MV, 5×5cm2), these differences reduced to 6% and 3%, respectively. Dose reconstruction performed in an anthropomorphic thoracic phantom for a 3-D conformal and an IMRT plan, showed good agreement between film data and reconstructed dose values (Pγ>1<6%). The algorithms of the TPS underestimated the dose in the low-dose regions outside the treatment field, due to an implementation error of the jaws and multileaf collimator of the linac in the TPS. The FFTC algorithm of the TPS showed differences up to 6% or 6mm at the interface between lung and breast. Two intensity-modulated radiation therapy head and neck plans, reconstructed in a commercial phantom having a bone-equivalent insert and an air cavity, showed good agreement between film measurement, reconstructed and planned dose distributions using the FFTC and MGS algorithm, except in the bone-equivalent regions where both TPS algorithms underestimated the dose with 4%. Absolute dose verification was performed at the isocenter where both planned and reconstructed dose were within 2% of the measured dose. Reproducibility for the EPID measurements was assessed and found to be of negligible influence on the reconstructed dose distribution. Our 3-D dose verification approach is based on the actual dose measured with an EPID in combination with a Monte Carlo dose engine, and therefore independent of a TPS. Because dose values are reconstructed in 3-D, isodose surfaces and dose-volume histograms can be used to detect dose differences in target volume and normal tissues. Using our method, the combined planning and treatment delivery process is verified, offering an easy to use tool for the verification of complex treatments.


Medical Physics | 2008

Calibration of megavoltage cone-beam CT for radiotherapy dose calculations : Correction of cupping artifacts and conversion of CT numbers to electron density

Steven F. Petit; Wouter van Elmpt; S. Nijsten; Philippe Lambin; Andre Dekker

Megavoltage cone-beam CT (MV CBCT) is used for three-dimensional imaging of the patient anatomy on the treatment table prior to or just after radiotherapy treatment. To use MV CBCT images for radiotherapy dose calculation purposes, reliable electron density (ED) distributions are needed. Patient scatter, beam hardening and softening effects result in cupping artifacts in MV CBCT images and distort the CT number to ED conversion. A method based on transmission images is presented to correct for these effects without using prior knowledge of the objects geometry. The scatter distribution originating from the patient is calculated with pencil beam scatter kernels that are fitted based on transmission measurements. The radiological thickness is extracted from the scatter subtracted transmission images and is then converted to the primary transmission used in the cone-beam reconstruction. These corrections are performed in an iterative manner, without using prior knowledge regarding the geometry and composition of the object. The method was tested using various homogeneous and inhomogeneous phantoms with varying shapes and compositions, including a phantom with different electron density inserts, phantoms with large density variations, and an anthropomorphic head phantom. For all phantoms, the cupping artifact was substantially removed from the images and a linear relation between the CT number and electron density was found. After correction the deviations in reconstructed ED from the true values were reduced from up to 0.30 ED units to 0.03 for the majority of the phantoms; the residual difference is equal to the amount of noise in the images. The ED distributions were evaluated in terms of absolute dose calculation accuracy for homogeneous cylinders of different size; errors decreased from 7% to below 1% in the center of the objects for the uncorrected and corrected images, respectively, and maximum differences were reduced from 17% to 2%, respectively. The presented method corrects the MV CBCT images for cupping artifacts and extracts reliable ED information of objects with varying geometries and composition, making these corrected MV CBCT images suitable for accurate dose calculation purposes.


Medical Physics | 2004

Verification of treatment parameter transfer by means of electronic portal dosimetry

S. Nijsten; A. Minken; Philippe Lambin; I. A. D. Bruinvis

Electronic portal imaging devices (EPIDs) are mainly used for patient setup verification during treatment but other geometric properties like block shape and leaf positions are also determined. Electronic portal dosimetry allows dosimetric treatment verification. By combining geometric and dosimetric information, the data transfer between treatment planning system (TPS) and linear accelerator can be verified which in particular is important when this transfer is not carried out electronically. We have developed a pretreatment verification procedure of geometric and dosimetric treatment parameters of a 10 MV photon beam using an EPID. Measurements were performed with a CCD camera-based iView EPID, calibrated to convert a greyscale EPID image into a two-dimensional absolute dose distribution. Central field dose calculations, independent of the TPS, are made to predict dose values at a focus-EPID distance of 157.5 cm. In the same EPID image, the presence of a wedge, its direction, and the field size defined by the collimating jaws were determined. The accuracy of the procedure was determined for open and wedged fields for various field sizes. Ionization chamber measurements were performed to determine the accuracy of the dose values measured with the EPID and calculated by the central field dose calculation. The mean difference between ionization chamber and EPID dose at the center of the fields was 0.8 +/- 1.2% (1 s.d.). Deviations larger than 2.5% were found for half fields and fields with a jaw in overtravel. The mean difference between ionization chamber results and the independent dose calculation was -0.21 +/- 0.6% (1 s.d.). For all wedged fields, the presence of the wedge was detected and the mean difference in actual and measured wedge direction was 0 +/- 3 degrees (1 s.d.). The mean field size differences in X and Y directions were 0.1 +/- 0.1 cm and 0.0 +/- 0.1 cm (1 s.d.), respectively. Pretreatment monitor unit verification is possible with high accuracy and also geometric parameters can be verified using the same EPID image.


Acta Oncologica | 2013

First clinical results of adaptive radiotherapy based on 3D portal dosimetry for lung cancer patients with atelectasis treated with volumetric-modulated arc therapy (VMAT)

Lucas Persoon; Ada G. T. M. Egelmeer; Michel Öllers; S. Nijsten; Esther G.C. Troost; Frank Verhaegen

Abstract Atelectasis in lung cancer patients can change rapidly during a treatment course, which may displace the tumor/healthy tissues, or change tissue densities locally. This may result in differences between the planned and the actually delivered dose. With complex delivery techniques treatment verification is essential and inter-fractional adaptation may be necessary. We present the first clinical results of treatment adaptation based on an in-house developed three-dimensional (3D) portal dose measurement (PDM) system. Material and methods. A method was developed for 3D PDM combined with cone beam computed tomography (kV-CBCT) imaging. Lung cancer patients are monitored routinely with this imaging technique. During treatment, the first three fractions are analyzed with 3D PDM and weekly thereafter. The reconstructed measured dose is compared to the planned dose using dose-volume histograms and a γ evaluation. Patients having |γ|> 1 in more than 5% of the (primary tumor or organ at risk) volume were subjected to further analysis. In this study we show the PDM dose changes for five patients. Results. We detected relevant dose changes induced by changes in atelectasis in the presented cases. Two patients received two treatment adaptations after being detected with PDM confirmed by visual inspection of the kV-CBCTs, and in two other patients the radiation treatment plan was adapted once. In one case no dose delivery change was detected with PDM. Conclusion. The first clinical patients show that 3D PDM combined with kV-CBCT is a valuable quality assurance tool for detecting anatomical alterations and their dosimetric consequences during the course of radiotherapy. In our clinic, 3D PDM is fully automated for ease and speed of the procedure, and for minimization of human error. The technique is able to flag patients with suspected dose discrepancies for potential adaptation of the treatment plan.

Collaboration


Dive into the S. Nijsten's collaboration.

Top Co-Authors

Avatar

Frank Verhaegen

Maastricht University Medical Centre

View shared research outputs
Top Co-Authors

Avatar

Mark Podesta

Maastricht University Medical Centre

View shared research outputs
Top Co-Authors

Avatar

P. Lambin

Maastricht University

View shared research outputs
Top Co-Authors

Avatar

Philippe Lambin

Maastricht University Medical Centre

View shared research outputs
Top Co-Authors

Avatar

Lucas Persoon

Maastricht University Medical Centre

View shared research outputs
Top Co-Authors

Avatar

W. Van Elmpt

Maastricht University Medical Centre

View shared research outputs
Top Co-Authors

Avatar

Ben J. Mijnheer

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Dirk De Ruysscher

Maastricht University Medical Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michel Öllers

Maastricht University Medical Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge