Mark Podesta
Maastricht University Medical Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mark Podesta.
Physics in Medicine and Biology | 2012
Stefan J. van Hoof; Patrick V. Granton; Guillaume Landry; Mark Podesta; Frank Verhaegen
A novel approach to read out radiochromic film was introduced recently by the manufacturer of GafChromic film. In this study, the performance of this triple-channel film dosimetry method was compared against the conventional single-red-channel film dosimetry procedure, with and without inclusion of a pre-irradiation (pre-IR) film scan, using EBT2 film and kilo- and megavoltage photon beams up to 10 Gy. When considering regions of interest averaged doses, the triple-channel method and both single-channel methods produced equivalent results. Absolute dose discrepancies between the triple-channel method, both single-channel methods and the treatment planning system calculated dose values, were no larger than 5 cGy for dose levels up to 2.2 Gy. Signal to noise in triple-channel dose images was found to be similar to signal to noise in single-channel dose images. The accuracy of resulting dose images from the triple- and single-channel methods with inclusion of pre-IR film scan was found to be similar. Results of a comparison of EBT2 data from a kilovoltage depth dose experiment to corresponding Monte Carlo depth dose data produced dose discrepancies of 9.5 ± 12 cGy and 7.6 ± 6 cGy for the single-channel method with inclusion of a pre-IR film scan and the triple-channel method, respectively. EBT2 showed to be energy sensitive at low kilovoltage energies with response differences of 11.9% and 15.6% in the red channel at 2 Gy between 50-225 kVp and 80-225 kVp photon spectra, respectively. We observed that the triple-channel method resulted in non-uniformity corrections of ±1% and consistency values of 0-3 cGy for the batches and dose levels studied. Results of this study indicate that the triple-channel radiochromic film read-out method performs at least as well as the single-channel method with inclusion of a pre-IR film scan, reduces film non-uniformity and saves time with elimination of a pre-IR film scan.
Medical Physics | 2012
Patrick V. Granton; Mark Podesta; Guillaume Landry; S. Nijsten; Gregory Bootsma; Frank Verhaegen
PURPOSE Novel small animal precision microirradiators (micro-IR) are becoming available for preclinical use and are often equipped with onboard imaging (OBI) devices. We investigated the use of OBI as a means to infer the accuracy of the delivered treatment plan. METHODS Monte Carlo modeling of the micro-IR including an elliptical Gaussian electron beam incident on the x-ray tube was used to score dose and to continue photon transport to the plane of the OBI device. A model of the OBI detector response was used to generate simulated onboard images. Experimental OBI was performed at 225 kVp, gain∕offset and scatter-glare were corrected. Simulated and experimentally obtained onboard images of phantoms and a mouse specimen were compared for a range of photon beam sizes from 2.5 cm down to 0.1 cm. RESULTS Simulated OBI can be used in small animal radiotherapy to determine if a treatment plan was delivered according to the prescription within an uncertainty of 5% for beams as small as 4 mm in diameter. For collimated beams smaller than 4 mm, beam profile differences remain primarily in the penumbra region of the smallest beams, which may be tolerable for specific preclinical micro-IR investigations. CONCLUSIONS Comparing simulated to acquired OBI during small animal treatment radiotherapy represents a useful treatment delivery tool.PURPOSE Novel small animal precision microirradiators (micro-IR) are becoming available for preclinical use and are often equipped with onboard imaging (OBI) devices. We investigated the use of OBI as a means to infer the accuracy of the delivered treatment plan. METHODS Monte Carlo modeling of the micro-IR including an elliptical Gaussian electron beam incident on the x-ray tube was used to score dose and to continue photon transport to the plane of the OBI device. A model of the OBI detector response was used to generate simulated onboard images. Experimental OBI was performed at 225 kVp, gain/offset and scatter-glare were corrected. Simulated and experimentally obtained onboard images of phantoms and a mouse specimen were compared for a range of photon beam sizes from 2.5 cm down to 0.1 cm. RESULTS Simulated OBI can be used in small animal radiotherapy to determine if a treatment plan was delivered according to the prescription within an uncertainty of 5% for beams as small as 4 mm in diameter. For collimated beams smaller than 4 mm, beam profile differences remain primarily in the penumbra region of the smallest beams, which may be tolerable for specific preclinical micro-IR investigations. CONCLUSIONS Comparing simulated to acquired OBI during small animal treatment radiotherapy represents a useful treatment delivery tool.
Medical Physics | 2011
Lucas Persoon; Mark Podesta; Wouter van Elmpt; S. Nijsten; Frank Verhaegen
PURPOSE A widely accepted method to quantify differences in dose distributions is the gamma (γ) evaluation. Currently, almost all γ implementations utilize the central processing unit (CPU). Recently, the graphics processing unit (GPU) has become a powerful platform for specific computing tasks. In this study, we describe the implementation of a 3D γ evaluation using a GPU to improve calculation time. METHODS The γ evaluation algorithm was implemented on an NVIDIA Tesla C2050 GPU using the compute unified device architecture (cuda). First, several cubic virtual phantoms were simulated. These phantoms were tested with varying dose cube sizes and set-ups, introducing artificial dose differences. Second, to show applicability in clinical practice, five patient cases have been evaluated using the 3D dose distribution from a treatment planning system as the reference and the delivered dose determined during treatment as the comparison. A calculation time comparison between the CPU and GPU was made with varying thread-block sizes including the option of using texture or global memory. RESULTS A GPU over CPU speed-up of 66 ± 12 was achieved for the virtual phantoms. For the patient cases, a speed-up of 57 ± 15 using the GPU was obtained. A thread-block size of 16 × 16 performed best in all cases. The use of texture memory improved the total calculation time, especially when interpolation was applied. Differences between the CPU and GPU γs were negligible. CONCLUSIONS The GPU and its features, such as texture memory, decreased the calculation time for γ evaluations considerably without loss of accuracy.
Physics in Medicine and Biology | 2014
Mark Podesta; S. Nijsten; L. Persoon; Stefan G. Scheib; Christof Baltes; Frank Verhaegen
Methods to calibrate Megavoltage electronic portal imaging devices (EPIDs) for dosimetry have been previously documented for dynamic treatments such as intensity modulated radiotherapy (IMRT) using flattened beams and typically using integrated fields. While these methods verify the accumulated field shape and dose, the dose rate and differential fields remain unverified. The aim of this work is to provide an accurate calibration model for time dependent pre-treatment dose verification using amorphous silicon (a-Si) EPIDs in volumetric modulated arc therapy (VMAT) for both flattened and flattening filter free (FFF) beams. A general calibration model was created using a Varian TrueBeam accelerator, equipped with an aS1000 EPID, for each photon spectrum 6 MV, 10 MV, 6 MV-FFF, 10 MV-FFF. As planned VMAT treatments use control points (CPs) for optimization, measured images are separated into corresponding time intervals for direct comparison with predictions. The accuracy of the calibration model was determined for a range of treatment conditions. Measured and predicted CP dose images were compared using a time dependent gamma evaluation using criteria (3%, 3 mm, 0.5 sec). Time dependent pre-treatment dose verification is possible without an additional measurement device or phantom, using the on-board EPID. Sufficient data is present in trajectory log files and EPID frame headers to reliably synchronize and resample portal images. For the VMAT plans tested, significantly more deviation is observed when analysed in a time dependent manner for FFF and non-FFF plans than when analysed using only the integrated field. We show EPID-based pre-treatment dose verification can be performed on a CP basis for VMAT plans. This model can measure pre-treatment doses for both flattened and unflattened beams in a time dependent manner which highlights deviations that are missed in integrated field verifications.
Physics in Medicine and Biology | 2012
Lucas Persoon; S. Nijsten; F J Wilbrink; Mark Podesta; J.A.D. Snaith; Tim Lustberg; W. Van Elmpt; F van Gils; Frank Verhaegen
Dose delivery of a radiotherapy treatment can be influenced by a number of factors. It has been demonstrated that the electronic portal imaging device (EPID) is valuable for transit portal dosimetry verification. Patient related dose differences can emerge at any time during treatment and can be categorized in two types: (1) systematic-appearing repeatedly, (2) random-appearing sporadically during treatment. The aim of this study is to investigate how systematic and random information appears in 2D transit dose distributions measured in the EPID plane over the entire course of a treatment and how this information can be used to examine interfractional trends, building toward a methodology to support adaptive radiotherapy. To create a trend overview of the interfractional changes in transit dose, the predicted portal dose for the different beams is compared to a measured portal dose using a γ evaluation. For each beam of the delivered fraction, information is extracted from the γ images to differentiate systematic from random dose delivery errors. From the systematic differences of a fraction for a projected anatomical structures, several metrics are extracted like percentage pixels with |γ| > 1. We demonstrate for four example cases the trends and dose difference causes which can be detected with this method. Two sample prostate cases show the occurrence of a random and systematic difference and identify the organ that causes the difference. In a lung cancer case a trend is shown of a rapidly diminishing atelectasis (lung fluid) during the course of treatment, which was detected with this trend analysis method. The final example is a breast cancer case where we show the influence of set-up differences on the 2D transit dose. A method is presented based on 2D portal transit dosimetry to record dose changes throughout the course of treatment, and to allow trend analysis of dose discrepancies. We show in example cases that this method can identify the causes of dose delivery differences and that treatment adaptation can be triggered as a result. It provides an important element toward informed decision-making for adaptive radiotherapy.
Medical Physics | 2016
Christopher Kurz; Florian Kamp; Yang-Kyun Park; Christoph Zöllner; Simon Rit; David C. Hansen; Mark Podesta; G Sharp; Minglun Li; Michael Reiner; Jan Hofmaier; Sebastian Neppl; Christian Thieke; Reinoud Nijhuis; Ute Ganswindt; Claus Belka; B. Winey; Katia Parodi; Guillaume Landry
PURPOSE This work aims at investigating intensity corrected cone-beam x-ray computed tomography (CBCT) images for accurate dose calculation in adaptive intensity modulated proton therapy (IMPT) for prostate and head and neck (H&N) cancer. A deformable image registration (DIR)-based method and a scatter correction approach using the image data obtained from DIR as prior are characterized and compared on the basis of the same clinical patient cohort for the first time. METHODS Planning CT (pCT) and daily CBCT data (reconstructed images and measured projections) of four H&N and four prostate cancer patients have been considered in this study. A previously validated Morphons algorithm was used for DIR of the planning CT to the current CBCT image, yielding a so-called virtual CT (vCT). For the first time, this approach was translated from H&N to prostate cancer cases in the scope of proton therapy. The warped pCT images were also used as prior for scatter correction of the CBCT projections for both tumor sites. Single field uniform dose and IMPT (only for H&N cases) treatment plans have been generated with a research version of a commercial planning system. Dose calculations on vCT and scatter corrected CBCT (CBCTcor) were compared by means of the proton range and a gamma-index analysis. For the H&N cases, an additional diagnostic replanning CT (rpCT) acquired within three days of the CBCT served as additional reference. For the prostate patients, a comprehensive contour comparison of CBCT and vCT, using a trained physicians delineation, was performed. RESULTS A high agreement of vCT and CBCTcor was found in terms of the proton range and gamma-index analysis. For all patients and indications between 95% and 100% of the proton dose profiles in beams eye view showed a range agreement of better than 3 mm. The pass rate in a (2%,2 mm) gamma-comparison was between 96% and 100%. For H&N patients, an equivalent agreement of vCT and CBCTcor to the reference rpCT was observed. However, for the prostate cases, an insufficient accuracy of the vCT contours retrieved from DIR was found, while the CBCTcor contours showed very high agreement to the contours delineated on the raw CBCT. CONCLUSIONS For H&N patients, no considerable differences of vCT and CBCTcor were found. For prostate cases, despite the high dosimetric agreement, the DIR yields incorrect contours, probably due to the more pronounced anatomical changes in the abdomen and the reduced soft-tissue contrast in the CBCT. Using the vCT as prior, these inaccuracies can be overcome and images suitable for accurate delineation and dose calculation in CBCT-based adaptive IMPT can be retrieved from scatter correction of the CBCT projections.
Medical Physics | 2012
Mark Podesta; S. Nijsten; J.A.D. Snaith; Marc Orlandini; Tim Lustberg; Davy Emans; Trent Aland; Frank Verhaegen
PURPOSE As external beam treatment plans become more dynamic and the dose to normal tissue is further constrained, treatments may consist of a larger number of beams, each delivering smaller doses (or monitor units, MU), in, e.g., volumetric modulated arc therapy (VMAT). Electronic portal imaging devices (EPID) may be used to verify external beam treatments on integrated fractions as well as in a more time dependent manner such as field by field. For treatment verification performed during a fraction (e.g., individual fields or VMAT control points), the lower limit of EPID measurement capability becomes important. The authors quantified the signal and timing accuracy of EPID images for low MU intensity modulated radiotherapy (IMRT) and conformal fields. METHODS EPID images were collected from three different vendors accelerators for low MU fields and compared to expected images. Simulations were performed to replicate the EPID acquisition pattern and to enhance the understanding of EPID readout schemes. RESULTS Large discrepancies between observed and predicted images were noted due to an under-response to single low MU fields. It is shown that a variability of up to 37% can be observed for low MU fields in clinically used EPID acquisition modes and that the majority of this variability can be accounted for by the readout scheme, integration, and timing of EPID acquisitions. Simulations have confirmed the causes of the discrepancies. The occurrence and extent of the variation has been estimated for clinical settings. CONCLUSIONS Incorrect absolute EPID signals collected for low MU fields in external beam treatments will negatively affect quantitative applications such as individual field based EPID dosimetry, typically appearing as an underdose, unless corrections to currently employed EPID readout schemes are made.
Physics in Medicine and Biology | 2014
Mark Podesta; L. Persoon; Frank Verhaegen
Modern external beam radiotherapy requires detailed verification and quality assurance so that confidence can be placed on both the delivery of a single treatment fraction and on the consistency of delivery throughout the treatment course. To verify dose distributions, a comparison between prediction and measurement must be made. Comparisons between two dose distributions are commonly performed using a Gamma evaluation which is a calculation of two quantities on a pixel by pixel basis; the dose difference, and the distance to agreement. By providing acceptance criteria (e.g. 3%, 3 mm), the function will find the most appropriate match within its two degrees of freedom. For complex dynamic treatments such as IMRT or VMAT it is important to verify the dose delivery in a time dependent manner and so a gamma evaluation that includes a degree of freedom in the time domain via a third parameter, time to agreement, is presented here. A C++ (mex) based gamma function was created that could be run on either CPU and GPU computing platforms that would allow a degree of freedom in the time domain. Simple test cases were created in both 2D and 3D comprising of simple geometrical shapes with well-defined boundaries varying over time. Changes of varying magnitude in either space or time were introduced and repeated gamma analyses were performed varying the criteria. A clinical VMAT case was also included, artificial air bubbles of varying size were introduced to a patient geometry, along with shifts of varying magnitude in treatment time. For all test cases where errors in distance, dose or time were introduced, the time dependent gamma evaluation could accurately highlight the errors.The time dependent gamma function presented here allows time to be included as a degree of freedom in gamma evaluations. The function allows for 2D and 3D data sets which are varying over time to be compared using appropriate criteria without penalising minor offsets of subsequent radiation fields in time.
Acta Oncologica | 2015
Lucas Persoon; Mark Podesta; L. Hoffmann; Abir Sanizadeh; Lotte E J R Schyns; Ben-Max de Ruiter; S. Nijsten; Ludvig Paul Muren; Esther G.C. Troost; Frank Verhaegen
ABSTRACT Background. Geometric changes are frequent during the course of treatment of lung cancer patients. This may potentially result in deviations between the planned and actual delivered dose. Electronic portal imaging device (EPID)-based integrated transit planar portal dosimetry (ITPD) is a fast method for absolute in-treatment dose verification. The aim of this study was to investigate if ITPD could detect geometric changes in lung cancer patients. Materials and methods. A total of 460 patients treated with volumetric modulated arc therapy (VMAT) following daily cone beam computed tomography (CT)-based setup were visually inspected for geometrical changes on a daily basis. Forty-six patients were subject to changes and had a re-CT and an adaptive treatment plan. The reasons for adaptation were: change in atelectasis (n = 18), tumor regression (n = 9), change in pleural effusion (n = 8) or other causes (n = 11). The ITPDs were calculated on both the initial planning CT and the re-CT and compared with a global gamma (γ) evaluation (criteria: 3%\3mm). A treatment fraction failed when the percentage of pixels failing in the radiation fields exceeded 10%. Dose-volume histograms (DVHs) were compared between the initial plan versus the plan re-calculated on the re-CT. Results. The ITPD threshold method detected 76% of the changes in atelectasis, while only 50% of the tumor regression cases and 42% of the pleural effusion cases were detected. Only 10% of the cases adapted for other reasons were detected with ITPD. The method has a 17% false-positive rate. No significant correlations were found between changes in DVH metrics and γ fail-rates. Conclusions. This study showed that most cases with geometric changes caused by atelectasis could be captured by ITPD, however for other causes ITPD is not sensitive enough to detect the clinically relevant changes and no predictive power of ITPD was found.
Medical Physics | 2014
Gabriel P. Fonseca; Rodrigo S. S. Viana; Mark Podesta; Rodrigo A. Rubo; Camila Pessoa de Sales; Brigitte Reniers; Hélio Yoriyaz; Frank Verhaegen
PURPOSE The dose delivered with a HDR (192)Ir afterloader can be separated into a dwell component, and a transit component resulting from the source movement. The transit component is directly dependent on the source speed profile and it is the goal of this study to measure accurate source speed profiles. METHODS A high speed video camera was used to record the movement of a (192)Ir source (Nucletron, an Elekta company, Stockholm, Sweden) for interdwell distances of 0.25-5 cm with dwell times of 0.1, 1, and 2 s. Transit dose distributions were calculated using a Monte Carlo code simulating the source movement. RESULTS The source stops at each dwell position oscillating around the desired position for a duration up to (0.026 ± 0.005) s. The source speed profile shows variations between 0 and 81 cm/s with average speed of ∼ 33 cm/s for most of the interdwell distances. The source stops for up to (0.005 ± 0.001) s at nonprogrammed positions in between two programmed dwell positions. The dwell time correction applied by the manufacturer compensates the transit dose between the dwell positions leading to a maximum overdose of 41 mGy for the considered cases and assuming an air-kerma strength of 48 000 U. The transit dose component is not uniformly distributed leading to over and underdoses, which is within 1.4% for commonly prescribed doses (3-10 Gy). CONCLUSIONS The source maintains its speed even for the short interdwell distances. Dose variations due to the transit dose component are much lower than the prescribed treatment doses for brachytherapy, although transit dose component should be evaluated individually for clinical cases.