Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Rowan is active.

Publication


Featured researches published by S. Rowan.


Classical and Quantum Gravity | 2002

Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings

G. M. Harry; A. M. Gretarsson; P. R. Saulson; Scott E Kittelberger; S. Penn; William J. Startin; S. Rowan; Martin M. Fejer; D. R. M. Crooks; G. Cagnoli; J. Hough; Norio Nakagawa

We report on thermal noise from the internal friction of dielectric coatings made from alternating layers of Ta2O5 and SiO2 deposited on fused silica substrates. We present calculations of the thermal noise in gravitational wave interferometers due to optical coatings, when the material properties of the coating are different from those of the substrate and the mechanical loss angle in the coating is anisotropic. The loss angle in the coatings for strains parallel to the substrate surface was determined from ringdown experiments. We measured the mechanical quality factor of three fused silica samples with coatings deposited on them. The loss angle, ||(f), of the coating material for strains parallel to the coated surface was found to be 4.2 ± 0.3 × 10−4 for coatings deposited on commercially polished slides, and 1.0 ± 0.3 × 10−4 for a coating deposited on a superpolished disc. Using these numbers, we estimate the effect of coatings on thermal noise in the initial LIGO and Advanced LIGO interferometers. We also find that the corresponding prediction for thermal noise in the 40 m LIGO prototype at Caltech is consistent with the noise data. These results are complemented by results for a different type of coating, presented in a companion paper.


Classical and Quantum Gravity | 2002

The GEO 600 gravitational wave detector

B. Willke; P. Aufmuth; Carsten Aulbert; S. Babak; R. Balasubramanian; B. Barr; Steven J. Berukoff; S. Bose; G. Cagnoli; M. M. Casey; D. Churches; D. Clubley; Carlo Nicola Colacino; D. R. M. Crooks; Curt Cutler; Karsten Danzmann; R. Davis; E. J. Elliffe; Carsten Fallnich; Andreas Freise; S. Gossler; A. Grant; H. Grote; Gerhard Heinzel; A. Heptonstall; M. Heurs; J. Hough; Keita Kawabe; Karsten Kötter; V. Leonhardt

The GEO 600 laser interferometer with 600 m armlength is part of a worldwide network of gravitational wave detectors. Due to the use of advanced technologies like multiple pendulum suspensions with a monolithic last stage and signal recycling, the anticipated sensitivity of GEO 600 is close to the initial sensitivity of detectors with several kilometres armlength. This paper describes the subsystems of GEO 600, the status of the detector by September 2001 and the plans towards the first science run.


Living Reviews in Relativity | 2000

Gravitational Wave Detection by Interferometry (Ground and Space)

M. Pitkin; S. Reid; S. Rowan; J. Hough

Significant progress has been made in recent years on the development of gravitational-wave detectors. Sources such as coalescing compact binary systems, neutron stars in low-mass X-ray binaries, stellar collapses and pulsars are all possible candidates for detection. The most promising design of gravitational-wave detector uses test masses a long distance apart and freely suspended as pendulums on Earth or in drag-free spacecraft. The main theme of this review is a discussion of the mechanical and optical principles used in the various long baseline systems in operation around the world — LIGO (USA), Virgo (Italy/France), TAMA300 and LCGT (Japan), and GEO600 (Germany/U.K.) — and in LISA, a proposed space-borne interferometer. A review of recent science runs from the current generation of ground-based detectors will be discussed, in addition to highlighting the astrophysical results gained thus far. Looking to the future, the major upgrades to LIGO (Advanced LIGO), Virgo (Advanced Virgo), LCGT and GEO600 (GEO-HF) will be completed over the coming years, which will create a network of detectors with the significantly improved sensitivity required to detect gravitational waves. Beyond this, the concept and design of possible future “third generation” gravitational-wave detectors, such as the Einstein Telescope (ET), will be discussed.


Classical and Quantum Gravity | 2007

Titania-doped tantala/silica coatings for gravitational-wave detection

G. M. Harry; M. Abernathy; Andres E Becerra-Toledo; H. Armandula; Eric D. Black; Kate Dooley; Matt Eichenfield; Chinyere Nwabugwu; A. Villar; D. R. M. Crooks; G. Cagnoli; J. Hough; Colin R How; Ian MacLaren; P. G. Murray; S. Reid; S. Rowan; P. Sneddon; Martin M. Fejer; R. Route; S. Penn; P. Ganau; Jean-Marie Mackowski; C. Michel; L. Pinard; A. Remillieux

Reducing thermal noise from optical coatings is crucial to reaching the required sensitivity in next generation interferometric gravitational-wave detectors. Here we show that adding TiO2 to Ta2O5 in Ta2O5/SiO2 coatings reduces the internal friction and in addition present data confirming it reduces thermal noise. We also show that TiO2-doped Ta2O5/SiO2 coatings are close to satisfying the optical absorption requirements of second generation gravitational-wave detectors.


Classical and Quantum Gravity | 2005

Hydroxide-catalysis bonding for stable optical systems for space

E. J. Elliffe; J. Bogenstahl; A. Deshpande; J. Hough; Christian J. Killow; S. Reid; D. I. Robertson; S. Rowan; H. Ward; G. Cagnoli

Space-based optical systems must be made from lightweight materials which can withstand significant acceleration and temperature changes. Materials such as ZERODUR®, ULE® (Ultra Low Expansion material) and silica are all potentially suitable. Depending on the specific requirements of the optical system and the transmissive or reflective nature of the optical layout these materials can be used by themselves or together to fabricate optical benches. The geometrical layouts of these optical systems are often very complicated and the requirements for mechanical stability very stringent, thus jointing components presents a challenge. In this paper we present developments of a novel chemical bonding process, originally invented at Stanford University for bonding silica components for the optical telescope for the Gravity Probe B mission. Colloquially called silicate bonding, this process utilizes hydroxide catalysis to join optical components to optical mounts to obtain high stability whilst accommodating the requirement for precise alignment procedures.


Classical and Quantum Gravity | 2003

Mechanical loss in tantala/silica dielectric mirror coatings

S. Penn; P. Sneddon; H. Armandula; J. Betzwieser; G. Cagnoli; Jordan Camp; D. R. M. Crooks; Martin M. Fejer; A. M. Gretarsson; G. M. Harry; J. Hough; Scott E Kittelberger; Michael J. Mortonson; R. Route; S. Rowan; Christophoros C. Vassiliou

Current interferometric gravitational wave detectors use test masses with mirror coatings formed from multiple layers of dielectric materials, most commonly alternating layers of SiO2 (silica) and Ta2O5 (tantala). However, mechanical loss in the Ta2O5/SiO2 coatings may limit the design sensitivity for advanced detectors. We have investigated sources of mechanical loss in the Ta2O5/SiO2 coatings, including loss associated with the coating–substrate interface, with the coating–layer interfaces and with the coating materials. Our results indicate that the loss is associated with the coating materials and that the loss of Ta2O5 is substantially larger than that of SiO2.


Classical and Quantum Gravity | 2006

Status of the GEO600 detector

H. Lück; M. Hewitson; P. Ajith; B. Allen; P. Aufmuth; C. Aulbert; S. Babak; R. Balasubramanian; B. Barr; Steven J. Berukoff; Alexander Bunkowski; G. Cagnoli; C. A. Cantley; M. M. Casey; S. Chelkowski; Y. Chen; D. Churches; T. Cokelaer; C. N. Colacino; D. R. M. Crooks; Curt Cutler; Karsten Danzmann; R. J. Dupuis; E. J. Elliffe; Carsten Fallnich; A. Franzen; A. Freise; I. Gholami; S. Goßler; A. Grant

Of all the large interferometric gravitational-wave detectors, the German/British project GEO600 is the only one which uses dual recycling. During the four weeks of the international S4 data-taking run it reached an instrumental duty cycle of 97% with a peak sensitivity of 7 × 10−22 Hz−1/2 at 1 kHz. This paper describes the status during S4 and improvements thereafter.


Physics Letters A | 1998

Mechanical losses associated with the technique of hydroxide-catalysis bonding of fused silica

S. Rowan; S.M. Twyford; J. Hough; D.-H. Gwo; R. Route

Abstract This paper describes the results of investigations into the mechanical losses associated with the technique of hydroxide-catalysis bonding of fused silica and fused silica. Our measurements suggest that this technique will be excellent for use in constructing the all fused silica suspensions planned for the GEO 600 gravitational wave detector.


Classical and Quantum Gravity | 2012

Design and development of the advanced LIGO monolithic fused silica suspension

A. Cumming; A. S. Bell; L. Barsotti; M. A. Barton; G. Cagnoli; Deborah J. Cook; L. Cunningham; M. Evans; G. Hammond; G. M. Harry; A. Heptonstall; J. Hough; R. Jones; R. Kumar; R. Mittleman; N. A. Robertson; S. Rowan; B. Shapiro; K. A. Strain; K. V. Tokmakov; C. I. Torrie; A. A. Van Veggel

The detection of gravitational waves remains one of the most challenging prospects faced by experimental physicists. One of the most significant limits to the sensitivity of current, and future, long-baseline interferometric gravitational wave detectors is thermal displacement noise of the test masses and their suspensions. Suspension thermal noise will be an important noise source at operating frequencies between approximately 10 and 30 Hz, and it results from a combination of thermoelastic damping, surface loss and bulk loss associated with the suspension fibres, and weld loss from their attachment. Its effects can be reduced by minimizing thermoelastic loss and optimizing pendulum dilution factor via the appropriate choice of geometry of the suspension fibre and attachment geometry. This paper will discuss the design and fabrication of a prototype of the fused silica suspension stage for use in the advanced LIGO (aLIGO) detector network, analysing in detail the design of the fused silica attachment pieces (ears), together with the suspension assembly techniques. We also present a full thermal noise analysis of the prototype suspension, taking into account for the first time the precise shape of the actual fibres used, and weld loss. We shall demonstrate the suitability of this suspension for installation into aLIGO.


Applied Optics | 2006

Thermal noise from optical coatings in gravitational wave detectors.

G. M. Harry; H. Armandula; Eric D. Black; D. R. M. Crooks; G. Cagnoli; J. Hough; P. G. Murray; S. Reid; S. Rowan; P. Sneddon; Martin M. Fejer; R. Route; S. Penn

Gravitational waves are a prediction of Einsteins general theory of relativity. These waves are created by massive objects, like neutron stars or black holes, oscillating at speeds appreciable to the speed of light. The detectable effect on the Earth of these waves is extremely small, however, creating strains of the order of 10(-21). There are a number of basic physics experiments around the world designed to detect these waves by using interferometers with very long arms, up to 4 km in length. The next-generation interferometers are currently being designed, and the thermal noise in the mirrors will set the sensitivity over much of the usable bandwidth. Thermal noise arising from mechanical loss in the optical coatings put on the mirrors will be a significant source of noise. Achieving higher sensitivity through lower mechanical loss coatings, while preserving the crucial optical and thermal properties, is an area of active research right now.

Collaboration


Dive into the S. Rowan's collaboration.

Top Co-Authors

Avatar

J. Hough

University of Glasgow

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge