Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. R. M. Crooks is active.

Publication


Featured researches published by D. R. M. Crooks.


Classical and Quantum Gravity | 2002

Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings

G. M. Harry; A. M. Gretarsson; P. R. Saulson; Scott E Kittelberger; S. Penn; William J. Startin; S. Rowan; Martin M. Fejer; D. R. M. Crooks; G. Cagnoli; J. Hough; Norio Nakagawa

We report on thermal noise from the internal friction of dielectric coatings made from alternating layers of Ta2O5 and SiO2 deposited on fused silica substrates. We present calculations of the thermal noise in gravitational wave interferometers due to optical coatings, when the material properties of the coating are different from those of the substrate and the mechanical loss angle in the coating is anisotropic. The loss angle in the coatings for strains parallel to the substrate surface was determined from ringdown experiments. We measured the mechanical quality factor of three fused silica samples with coatings deposited on them. The loss angle, ||(f), of the coating material for strains parallel to the coated surface was found to be 4.2 ± 0.3 × 10−4 for coatings deposited on commercially polished slides, and 1.0 ± 0.3 × 10−4 for a coating deposited on a superpolished disc. Using these numbers, we estimate the effect of coatings on thermal noise in the initial LIGO and Advanced LIGO interferometers. We also find that the corresponding prediction for thermal noise in the 40 m LIGO prototype at Caltech is consistent with the noise data. These results are complemented by results for a different type of coating, presented in a companion paper.


Classical and Quantum Gravity | 2002

The GEO 600 gravitational wave detector

B. Willke; P. Aufmuth; Carsten Aulbert; S. Babak; R. Balasubramanian; B. Barr; Steven J. Berukoff; S. Bose; G. Cagnoli; M. M. Casey; D. Churches; D. Clubley; Carlo Nicola Colacino; D. R. M. Crooks; Curt Cutler; Karsten Danzmann; R. Davis; E. J. Elliffe; Carsten Fallnich; Andreas Freise; S. Gossler; A. Grant; H. Grote; Gerhard Heinzel; A. Heptonstall; M. Heurs; J. Hough; Keita Kawabe; Karsten Kötter; V. Leonhardt

The GEO 600 laser interferometer with 600 m armlength is part of a worldwide network of gravitational wave detectors. Due to the use of advanced technologies like multiple pendulum suspensions with a monolithic last stage and signal recycling, the anticipated sensitivity of GEO 600 is close to the initial sensitivity of detectors with several kilometres armlength. This paper describes the subsystems of GEO 600, the status of the detector by September 2001 and the plans towards the first science run.


Classical and Quantum Gravity | 2007

Titania-doped tantala/silica coatings for gravitational-wave detection

G. M. Harry; M. Abernathy; Andres E Becerra-Toledo; H. Armandula; Eric D. Black; Kate Dooley; Matt Eichenfield; Chinyere Nwabugwu; A. Villar; D. R. M. Crooks; G. Cagnoli; J. Hough; Colin R How; Ian MacLaren; P. G. Murray; S. Reid; S. Rowan; P. Sneddon; Martin M. Fejer; R. Route; S. Penn; P. Ganau; Jean-Marie Mackowski; C. Michel; L. Pinard; A. Remillieux

Reducing thermal noise from optical coatings is crucial to reaching the required sensitivity in next generation interferometric gravitational-wave detectors. Here we show that adding TiO2 to Ta2O5 in Ta2O5/SiO2 coatings reduces the internal friction and in addition present data confirming it reduces thermal noise. We also show that TiO2-doped Ta2O5/SiO2 coatings are close to satisfying the optical absorption requirements of second generation gravitational-wave detectors.


Classical and Quantum Gravity | 2003

Mechanical loss in tantala/silica dielectric mirror coatings

S. Penn; P. Sneddon; H. Armandula; J. Betzwieser; G. Cagnoli; Jordan Camp; D. R. M. Crooks; Martin M. Fejer; A. M. Gretarsson; G. M. Harry; J. Hough; Scott E Kittelberger; Michael J. Mortonson; R. Route; S. Rowan; Christophoros C. Vassiliou

Current interferometric gravitational wave detectors use test masses with mirror coatings formed from multiple layers of dielectric materials, most commonly alternating layers of SiO2 (silica) and Ta2O5 (tantala). However, mechanical loss in the Ta2O5/SiO2 coatings may limit the design sensitivity for advanced detectors. We have investigated sources of mechanical loss in the Ta2O5/SiO2 coatings, including loss associated with the coating–substrate interface, with the coating–layer interfaces and with the coating materials. Our results indicate that the loss is associated with the coating materials and that the loss of Ta2O5 is substantially larger than that of SiO2.


Classical and Quantum Gravity | 2006

Status of the GEO600 detector

H. Lück; M. Hewitson; P. Ajith; B. Allen; P. Aufmuth; C. Aulbert; S. Babak; R. Balasubramanian; B. Barr; Steven J. Berukoff; Alexander Bunkowski; G. Cagnoli; C. A. Cantley; M. M. Casey; S. Chelkowski; Y. Chen; D. Churches; T. Cokelaer; C. N. Colacino; D. R. M. Crooks; Curt Cutler; Karsten Danzmann; R. J. Dupuis; E. J. Elliffe; Carsten Fallnich; A. Franzen; A. Freise; I. Gholami; S. Goßler; A. Grant

Of all the large interferometric gravitational-wave detectors, the German/British project GEO600 is the only one which uses dual recycling. During the four weeks of the international S4 data-taking run it reached an instrumental duty cycle of 97% with a peak sensitivity of 7 × 10−22 Hz−1/2 at 1 kHz. This paper describes the status during S4 and improvements thereafter.


Applied Optics | 2006

Thermal noise from optical coatings in gravitational wave detectors.

G. M. Harry; H. Armandula; Eric D. Black; D. R. M. Crooks; G. Cagnoli; J. Hough; P. G. Murray; S. Reid; S. Rowan; P. Sneddon; Martin M. Fejer; R. Route; S. Penn

Gravitational waves are a prediction of Einsteins general theory of relativity. These waves are created by massive objects, like neutron stars or black holes, oscillating at speeds appreciable to the speed of light. The detectable effect on the Earth of these waves is extremely small, however, creating strains of the order of 10(-21). There are a number of basic physics experiments around the world designed to detect these waves by using interferometers with very long arms, up to 4 km in length. The next-generation interferometers are currently being designed, and the thermal noise in the mirrors will set the sensitivity over much of the usable bandwidth. Thermal noise arising from mechanical loss in the optical coatings put on the mirrors will be a significant source of noise. Achieving higher sensitivity through lower mechanical loss coatings, while preserving the crucial optical and thermal properties, is an area of active research right now.


Physics Letters A | 2006

Mechanical Dissipation in Silicon Flexures

S. Reid; G. Cagnoli; D. R. M. Crooks; J. Hough; P. G. Murray; S. Rowan; Martin M. Fejer; R. Route; S. Zappe

The thermo-mechanical properties of silicon make it of significant interest as a possible material for mirror substrates and suspension elements for future long-baseline gravitational wave detectors. The mechanical dissipation in 92 μm thick 〈110〉 single-crystal silicon cantilevers has been observed over the temperature range 85 K to 300 K, with dissipation approaching levels down to ϕ=4.4×10−7.


Physical Review D | 2004

Thermoelastic dissipation in inhomogeneous media: loss measurements and displacement noise in coated test masses for interferometric gravitational wave detectors

Martin M. Fejer; S. Rowan; G. Cagnoli; D. R. M. Crooks; A. M. Gretarsson; G. M. Harry; J. Hough; S. D. Penn; P. Sneddon; S. P. Vyatchanin

The displacement noise in the test-mass mirrors of interferometric gravitational wave detectors is proportional to their elastic dissipation at the observation frequencies. In this paper, we analyze one fundamental source of dissipation in thin coatings, thermoelastic damping associated with the dissimilar thermal and elastic properties of the film and the substrate. We obtain expressions for the thermoelastic dissipation factor necessary to interpret resonant loss measurements, and for the spectral density of displacement noise imposed on a Gaussian beam reflected from the face of a coated mass. The predicted size of these effects is large enough to affect the interpretation of loss measurements, and to influence design choices in advanced gravitational wave detectors.


Classical and Quantum Gravity | 2002

Quadruple suspension design for Advanced LIGO

N. A. Robertson; G. Cagnoli; D. R. M. Crooks; E. J. Elliffe; J. E. Faller; P. Fritschel; S. Goßler; A. Grant; A. Heptonstall; J. Hough; H. Lück; R. Mittleman; M. Perreur-Lloyd; M. V. Plissi; S. Rowan; D. H. Shoemaker; P. Sneddon; K. A. Strain; C. I. Torrie; H. Ward; P. A. Willems

In this paper, we describe the conceptual design for the suspension system for the test masses for Advanced LIGO, the planned upgrade to LIGO, the US laser interferometric gravitational-wave observatory. The design is based on the triple pendulum design developed for GEO 600—the German/UK interferometric gravitational wave detector. The GEO design incorporates fused silica fibres of circular cross-section attached to the fused silica mirror (test mass) in the lowest pendulum stage, in order to minimize the thermal noise from the pendulum modes. The damping of the low-frequency modes of the triple pendulum is achieved by using co-located sensors and actuators at the highest mass of the triple pendulum. Another feature of the design is that global control forces acting on the mirrors, used to maintain the output of th ei nterferometer on a dark fringe, are applied via a triple reaction pendulum, so that these forces can be implemented via a seismically isolated platform. These techniques have been extended to meet the more stringent noise levels planned for in Advanced LIGO. In particular, the Advanced LIGO baseline design requires a quadruple pendulum with afi nal stage consisting of a 40 kg sapphire mirror, suspended on fused silica ribbons or fibres. The design is chosen to aim to reach a target noise contribution from the suspension corresponding to a displacement sensitivity of 10 −19 mH z −1/2 at 10 Hz at each of the tes tm asses. PACS number: 0480N


Proceedings of SPIE | 2004

The status of GEO 600

K. A. Strain; B. Allen; P. Aufmuth; Carsten Aulbert; S. Babak; R. Balasubramanian; B. Barr; Steven J. Berukoff; Alexander Bunkowski; G. Cagnoli; C. A. Cantley; M. M. Casey; S. Chelkowski; D. Churches; T. Cokelaer; Carlo Nicola Colacino; D. R. M. Crooks; Curt Cutler; Karsten Danzmann; R. Davies; R. J. Dupuis; E. J. Elliffe; Carsten Fallnich; A. Franzen; Andreas Freise; S. Goßler; A. Grant; H. Grote; S. Grunewald; J. Harms

The GEO 600 laser interferometer with 600m armlength is part of a worldwide network of gravitational wave detectors. GEO 600 is unique in having advanced multiple pendulum suspensions with a monolithic last stage and in employing a signal recycled optical design. This paper describes the recent commissioning of the interferometer and its operation in signal recycled mode.

Collaboration


Dive into the D. R. M. Crooks's collaboration.

Top Co-Authors

Avatar

J. Hough

University of Glasgow

View shared research outputs
Top Co-Authors

Avatar

S. Rowan

University of Glasgow

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Grant

University of Glasgow

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Barr

University of Glasgow

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge