S S Mohd Zuki
Universiti Sains Malaysia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by S S Mohd Zuki.
Applied Mechanics and Materials | 2015
S S Mohd Zuki; J. Jayaprakash; Shahiron Shahidan; Ong Chong Yong
This paper presents the result of an experimental investigation of axial behavior of concrete-filled double skin steel tubular (CFDST) columns exposed to high temperature under the action of monotonically applied concentric axial loads. The columns were exposed to ASTM E-119 standard fire curve until 600°C and kept constant for two different exposure time (i.e., 60 and 90 minutes). Failure patterns and reduction in strength, ductility and stiffness of CFDST columns are reported. Factors influencing the strength, ductility and stiffness of CFDST columns during fire exposure, i.e., exposure time, temperature of concrete core and temperature of inner steel tube, are also discussed.
IOP Conference Series: Materials Science and Engineering | 2017
Alif Syazani Leman; Shahiron Shahidan; A J Nasir; Mohamad Syamir Senin; S S Mohd Zuki; M. H. Wan Ibrahim; Rafikullah Deraman; Faisal Sheikh Khalid; A T S Azhar
Coconut shellsare a type of agricultural waste which can be converted into useful material. Therefore,this study was conducted to investigate the properties of concrete which uses coconut shell powder (CSP)filler material and to define the optimum percentage of CSP which can be used asfiller material in concrete. Comparisons have been made between normal concrete mixes andconcrete containing CSP. In this study, CSP was added into concrete mixes invaryingpercentages(0%, 2%, 4%, 6%, 8% and 10%). The coconut shell was grounded into afine powder before use. Experimental tests which have been conducted in this study include theslump test, compressive test and splitting tensile strength test. CSP have the potential to be used as a concrete filler and thus the findings of this study may be applied to the construction industry. The use of CSP as a filler in concrete can help make the earth a more sustainable and greener place to live in.
Applied Mechanics and Materials | 2015
S S Mohd Zuki; Kok Keong Choong; J. Jayaprakash; Shahiron Shahidan
Concrete-filled double skin steel tubular (CFDST) columns with three different diameters were exposed to fire following ASTM E-119 fire curve. The temperature was kept constant for 60 minutes after reaching 600°C. After the cooling down process, the columns were tested under concentric axial load condition until failure. Maximum loads, displacement and strain were recorded during testing. Failure patterns were observed. In this paper, failure patterns, increment or reduction of residual strength, ductility and stiffness are reported and discussed in details. All tested CFDST columns failed by local buckling and crushing of concrete. As expected, residual strength index (RSI) decreased with increased fire exposure time. Whereas, larger diameter heated specimen retain more than 50% of it corresponding room temperature secant stiffness. In addition, ductility index (DI) of larger diameter specimen shows an enhancement after fire exposure. Highest enhancement in DI was observed in 90 minutes fire exposure.
IOP Conference Series: Materials Science and Engineering | 2017
Mohamad Syamir Senin; Shahiron Shahidan; M Z Md Maarof; Alif Syazani Leman; S S Mohd Zuki; M A Mohammad Azmi
The use of a jacket made of fiber reinforced cement mortar with tensile hardening behaviour for strengthening RC beams was investigated in this study. A full-scale test was conducted on beams measuring 1000mm in length. A 25mm jacket was directly applied to the surface of the beams to test its ability to repair and strengthen the beams. The beams were initially damaged and eventually repaired. Three types of beams which included unrepaired beams, beams repaired with normal mortar jacket and beams repaired with 10% sugarcane bagasse fiber mortar jacket were studied. The jacket containing 10% of sugarcane bagasse fiber enhanced the flexural strength of the beams.
IOP Conference Series: Materials Science and Engineering | 2017
Alif Syazani Leman; Shahiron Shahidan; Mohamad Syamir Senin; Shamrul-mar Shamsuddin; N A Anak Guntor; S S Mohd Zuki; Faisal Sheikh Khalid; A T S Azhar; N H S Razak
The rising cost of construction in developing countries like Malaysia has led concrete experts to explore alternative materials such as coconut shells which are renewable and possess high potential to be used as construction material. Coconut shell powder in varying percentages of1%, 3% and 5% was used as filler material in concrete grade 30 and evaluated after a curing period of 7 days and 28days respectively. Compressive strength, water absorption and carbonation tests were conducted to evaluate the strength and durability of CSP concrete in comparison with normal concrete. The test results revealed that 1%, 3% and 5% of CSP concrete achieved a compressive strength of 47.65MPa, 45.6MPa and 40.55% respectively. The rate of water absorption of CSP concrete was recorded as 3.21%, 2.47%, and 2.73% for 1%, 3% and 5% of CSP concrete respectively. Although CSP contained a carbon composition of 47%, the carbonation test showed that CSP no signs of carbon were detected inside the concrete. To conclude, CSP offers great prospects as it demonstrated relatively high durability as a construction material.
IOP Conference Series: Materials Science and Engineering | 2017
A I F Ahmad Maliki; Shahiron Shahidan; Noorwirdawati Ali; N I R Ramzi Hannan; S S Mohd Zuki; Mohd Haziman Wan Ibrahim; M A Mohammad Azmi; M. Abdul Rahim
The increasing demand in the construction industry will lead to the depletion of materials used in construction sites such as sand. Due to this situation, coal bottom ash (CBA) was selected as a replacement for sand. CBA is a by-product of coal combustion from power plants. CBA has particles which are angular, irregular and porous with a rough surface texture. CBA also has the appearance and particle size distribution similar to river sand. Therefore, these properties of CBA make it attractive to be used as fine aggregate replacement in concrete. The objectives of this study were to determine the properties of CBA concrete and to evaluate the optimum percentage of CBA to be used in concrete as fine aggregate replacement. The CBA was collected at Tanjung Bin power plant. The mechanical experiment (compressive and tensile strength test) was conducted on CBA concrete. Before starting the mechanical experiment, cubic and cylindrical specimens with dimensions measuring 100 × 100 × 100 mm and 150 × 300 mm were produced based on the percentage of coal bottom ash in this study which is 0% as the control specimen. Meanwhile 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100% of CBA were used to replace the fine aggregates. The CBA concrete samples were cured for 7 days and 28 days respectively to maintain the rate of hydration and moisture. After the experimental work was done, it can be concluded that the optimum percentage of CBA as fine aggregate is 60% for a curing period of both 7 days and 28 days with the total compressive strength of 36.4 Mpa and 46.2 Mpa respectively. However, the optimum percentage for tensile strength is at 70% CBA for a curing period of both 7 days and 28 days with a tensile strength of 3.03 MPa and 3.63 MPa respectively.
IOP Conference Series: Materials Science and Engineering | 2017
Nur Amira Afiza Saiful Bahari; Shahiron Shahidan; Siti Radziah Abdullah; Noorwirdawati Ali; S S Mohd Zuki; Mohd Haziman Wan Ibrahim; Mustaqqim Abdul Rahim
The acoustic emission (AE) technique is an effective tool for the evaluation of crack growth. The aim of this study is to evaluate crack classification in reinforced concrete beams using statistical analysis. AE has been applied for the early monitoring of reinforced concrete structures using AE parameters such as average frequency, rise time, amplitude counts and duration. This experimental study focuses on the utilisation of this method in evaluating reinforced concrete beams. Beam specimens measuring 150 mm x 250 mm x 1200 mm were tested using a three-point load flexural test using Universal Testing Machines (UTM) together with an AE monitoring system. The results indicated that RA value can be used to determine the relationship between tensile crack and shear movement in reinforced concrete beams.
IOP Conference Series: Materials Science and Engineering | 2017
A A M Sharif; Shahiron Shahidan; Heng Boon Koh; A Kandash; S S Mohd Zuki
Pervious concrete with high porosity has good permeability and low mechanical strengths are commonly used in controlling storm water management. It is different from normal concrete. It is only containing single size of coarse aggregate and has lower density compared with normal concrete. This study was focused on the effect of Engineered Biomass Aggregate (EBA) on the compressive strength, void ratio and water permeability of pervious concrete. EBA was prepared by coating the biomass aggregate with epoxy resin. EBA was used to replace natural coarse aggregate ranging from 0% to 25%. 150 mm cube specimens were prepared and used to study the compressive strength, void ratio and water permeability. Compressive strength was tested at 7, 14 and 28 days. Meanwhile, void ratio and permeability tests were carried out on 28 days. The experimental results showed that pervious concrete containing EBA gained lower compressive strength. The compressive strength was reduced gradually by increasing the percentage of EBA. Overall, Pervious concrete containing EBA achieved higher void ratio and permeability.
IOP Conference Series: Materials Science and Engineering | 2017
Mohamad Syamir Senin; Shahiron Shahidan; Alif Syazani Leman; Nurulain Othman; Shamrul-mar Shamsuddin; Mohd Haziman Wan Ibrahim; S S Mohd Zuki
Nowadays, uncontrolled disposal of waste materials such as tyres can affect the environment. Therefore, careful management of waste disposal must be done in order to conserve the environment. Waste tyres can be use as a replacement for both fine aggregate and coarse aggregate in the production of concrete. This research was conducted to assess the durability of concrete containing recycled tyres which have been crushed into fine fragments to replace fine aggregate in the concrete mix. This study presents an overview of the use of waste rubber as a partial replacement of natural fine aggregate in a concrete mix. 36 concrete cubes measuring 100mm x 100mm x 100mm and 12 concrete cubes measuring 150mm x 150mm x 150mm were prepared and added with different percentages of rubber from recycled tyres (0%, 3%, 5% and 7%) as fine aggregate replacement. The results obtained show that the replacement of fine aggregate with 7% of rubber recorded a compressive strength of 43.7MPa while the addition of 3% of rubber in the concrete sample recorded a high compressive strength of 50.8MPa. This shows that there is a decrease in the strength and workability of concrete as the amount of rubber used a replacement for fine aggregate in concrete increases. On the other hand, the water absorption test indicated that concrete which contains rubber has better water absorption ability. In this study, 3% of rubber was found to be the optimal percentage as a partial replacement for fine aggregate in the production of concrete.
Archive | 2014
Shahiron Shahidan; N. Muhamad Bunnori; N. Md Nor; M. Abd Rahim; Siti Radziah Abdullah; S S Mohd Zuki