S. Speller
Radboud University Nijmegen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by S. Speller.
Science | 2006
Richard van Hameren; Peter Schön; Arend M. van Buul; Johan Hoogboom; Sergiy V. Lazarenko; J.W. Gerritsen; H. Engelkamp; Peter C. M. Christianen; Hans A. Heus; Jan C. Maan; T.H.M. Rasing; S. Speller; Alan E. Rowan; Johannes A. A. W. Elemans; Roeland J. M. Nolte
The use of bottom-up approaches to construct patterned surfaces for technological applications is appealing, but to date is applicable to only relatively small areas (∼10 square micrometers). We constructed highly periodic patterns at macroscopic length scales, in the range of square millimeters, by combining self-assembly of disk-like porphyrin dyes with physical dewetting phenomena. The patterns consisted of equidistant 5-nanometer-wide lines spaced 0.5 to 1 micrometers apart, forming single porphyrin stacks containing millions of molecules, and were formed spontaneously upon drop-casting a solution of the molecules onto a mica surface. On glass, thicker lines are formed, which can be used to align liquid crystals in large domains of square millimeter size.
Nature Nanotechnology | 2007
B. Hulsken; Richard van Hameren; J.W. Gerritsen; Tony Khoury; Pall Thordarson; Maxwell J. Crossley; Alan E. Rowan; Roeland J. M. Nolte; Johannes A. A. W. Elemans; S. Speller
Many chemical reactions are catalysed by metal complexes, and insight into their mechanisms is essential for the design of future catalysts. A variety of conventional spectroscopic techniques are available for the study of reaction mechanisms at the ensemble level, and, only recently, fluorescence microscopy techniques have been applied to monitor single chemical reactions carried out on crystal faces and by enzymes. With scanning tunnelling microscopy (STM) it has become possible to obtain, during chemical reactions, spatial information at the atomic level. The majority of these STM studies have been carried out under ultrahigh vacuum, far removed from conditions encountered in laboratory processes. Here we report the single-molecule imaging of oxidation catalysis by monitoring, with STM, individual manganese porphyrin catalysts, in real time, at a liquid-solid interface. It is found that the oxygen atoms from an O2 molecule are bound to adjacent porphyrin catalysts on the surface before their incorporation into an alkene substrate.
Ultramicroscopy | 2011
Joost te Riet; A. J. Katan; Christian Rankl; Stefan W. Stahl; Arend M. van Buul; In Yee Phang; Alberto Gomez-Casado; Peter Manfred Schön; J.W. Gerritsen; Alessandra Cambi; Alan E. Rowan; G. Julius Vancso; Pascal Jonkheijm; Jurriaan Huskens; Tjerk H. Oosterkamp; Hermann E. Gaub; Peter Hinterdorfer; Carl G. Figdor; S. Speller
Single-molecule force spectroscopy studies performed by Atomic Force Microscopes (AFMs) strongly rely on accurately determined cantilever spring constants. Hence, to calibrate cantilevers, a reliable calibration protocol is essential. Although the thermal noise method and the direct Sader method are frequently used for cantilever calibration, there is no consensus on the optimal calibration of soft and V-shaped cantilevers, especially those used in force spectroscopy. Therefore, in this study we aimed at establishing a commonly accepted approach to accurately calibrate compliant and V-shaped cantilevers. In a round robin experiment involving eight different laboratories we compared the thermal noise and the Sader method on ten commercial and custom-built AFMs. We found that spring constants of both rectangular and V-shaped cantilevers can accurately be determined with both methods, although the Sader method proved to be superior. Furthermore, we observed that simultaneous application of both methods on an AFM proved an accurate consistency check of the instrument and thus provides optimal and highly reproducible calibration. To illustrate the importance of optimal calibration, we show that for biological force spectroscopy studies, an erroneously calibrated cantilever can significantly affect the derived (bio)physical parameters. Taken together, our findings demonstrated that with the pre-established protocol described reliable spring constants can be obtained for different types of cantilevers.
Nature Chemistry | 2013
Duncan den Boer; Min Li; Thomas Habets; Patrizia Iavicoli; Alan E. Rowan; Roeland J. M. Nolte; S. Speller; David B. Amabilino; Steven De Feyter; Johannes A. A. W. Elemans
Manganese porphyrins have been extensively investigated as model systems for the natural enzyme cytochrome P450 and as synthetic oxidation catalysts. Here, we report single-molecule studies of the multistep reaction of manganese porphyrins with molecular oxygen at a solid/liquid interface, using a scanning tunnelling microscope (STM) under environmental control. The high lateral resolution of the STM, in combination with its sensitivity to subtle differences in the electronic properties of molecules, allowed the detection of at least four distinct reaction species. Real-space and real-time imaging of reaction dynamics enabled the observation of active sites, immobile on the experimental timescale. Conversions between the different species could be tuned by the composition of the atmosphere (argon, air or oxygen) and the surface bias voltage. By means of extensive comparison of the results to those obtained by analogous solution-based chemistry, we assigned the observed species to the starting compound, reaction intermediates and products.
Journal of the American Chemical Society | 2012
Giovanni Salassa; Michiel J. J. Coenen; Sander J. Wezenberg; Bas L. M. Hendriksen; S. Speller; Johannes A. A. W. Elemans; Arjan W. Kleij
A bis-Zn(salphen) structure shows extremely strong self-assembly both in solution as well as at the solid-liquid interface as evidenced by scanning tunneling microscopy, competitive UV-vis and fluorescence titrations, dynamic light scattering, and transmission electron microscopy. Density functional theory analysis on the Zn(2) complex rationalizes the very high stability of the self-assembled structures provoked by unusual oligomeric (Zn-O)(n) coordination motifs within the assembly. This coordination mode is strikingly different when compared with mononuclear Zn(salphen) analogues that form dimeric structures having a typical Zn(2)O(2) central unit. The high stability of the multinuclear structure therefore holds great promise for the development of stable self-assembled monolayers with potential for new opto-electronic materials.
Physical Review Letters | 2004
Sz. Csonka; A. Halbritter; G. Mihály; O.I. Shklyarevskii; S. Speller; H. van Kempen
Results of an experimental study of palladium nanojunctions in a hydrogen environment are presented. Two new hydrogen-related atomic configurations are found, which have conductances of similar to0.5 and similar to1 quantum unit (2e(2)/h). Phonon spectrum measurements demonstrate that these configurations are situated between electrodes containing dissolved hydrogen. The crucial differences compared to the previously studied Pt-H-2 junctions and the possible microscopic realizations of the new configurations in palladium-hydrogen atomic-sized contacts are discussed.
Physical Review Letters | 2005
I. K. Yanson; O.I. Shklyarevskii; Sz. Csonka; H. van Kempen; S. Speller; A. I. Yanson; J. M. van Ruitenbeek
Nanowires of different natures have been shown to self-assemble as a function of stress at the contact between two macroscopic metallic leads. Here we demonstrate for Au wires that the balance between various metastable nanowire configurations is influenced by the microstructure of the starting materials, and we discover a new set of periodic structures, which we interpret as due to the atomic discreteness of the contact size for the three principal crystal orientations.
Surface Science | 1999
S. Speller; T. Rauch; J. Bömermann; P. Borrmann; W. Heiland
S is adsorbed on Pd(111) from the gas phase using H2S as ‘carrier’ gas. After adsorption at room temperature a (3×3)R30° LEED pattern is observed. Using STM coexisting (3×3)R30°, (7×7)R19.1° (2×2) stripes, (2×2) triangles and disordered S structures are found. Annealing favors the formation of (7×7)R19.1° areas on the surface. The structures, produced by H2S adsorption are compared with S structures produced by segregation. A detailed model for the (7×7)R19.1° is developed on the basis of AES and XPS data and FLAPW calculations.
Physical Chemistry Chemical Physics | 2006
Peter Liljeroth; Lucian Jdira; Karin Overgaag; B. Grandidier; S. Speller; Daniel Vanmaekelbergh
Molecules, supramolecular structures and semiconductor nanocrystals are increasingly used as the active components in prototype opto-electrical devices with miniaturized dimensions and novel functions. Therefore, there is a strong need to measure the electronic structure of such single, individual nano-objects. Here, we explore the potential of scanning tunnelling spectroscopy to obtain quantitative information on the energy levels and Coulomb interactions of semiconductor quantum dots. We discuss the conditions under which shell-tunnelling, shell-filling and bipolar spectroscopy can be performed, and illustrate this with spectra acquired on individual CdSe and PbSe quantum dots. We conclude that quantitative information on the energy levels and Coulomb interactions can be obtained if the physics of the tip/quantum dot/substrate double-barrier tunnel junction is well understood.
Chemical Communications | 2010
Johannes A. A. W. Elemans; Sander J. Wezenberg; Michiel J. J. Coenen; Eduardo C. Escudero-Adán; Jordi Benet-Buchholz; Duncan den Boer; S. Speller; Arjan W. Kleij; Steven De Feyter
Nickel salophens exclusively form monolayers at a liquid-solid interface, while in contrast zinc salophens mainly self-assemble into bilayers via axial ligand self-coordination which can be disrupted by the addition of pyridine axial ligands.