Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Saad S. Kenderian is active.

Publication


Featured researches published by Saad S. Kenderian.


Leukemia | 2015

CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia

Saad S. Kenderian; Marco Ruella; Olga Shestova; Michael Klichinsky; Vania Aikawa; Jennifer J.D. Morrissette; John Scholler; De-Gang Song; David L. Porter; Martin Carroll; Carl H. June; Saar Gill

Patients with chemo-refractory acute myeloid leukemia (AML) have a dismal prognosis. Chimeric antigen receptor T (CART) cell therapy has produced exciting results in CD19+ malignancies and may overcome many of the limitations of conventional leukemia therapies. We developed CART cells to target CD33 (CART33) using the anti-CD33 single chain variable fragment used in gemtuzumab ozogamicin (clone My96) and tested the activity and toxicity of these cells. CART33 exhibited significant effector functions in vitro and resulted in eradication of leukemia and prolonged survival in AML xenografts. CART33 also resulted in human lineage cytopenias and reduction of myeloid progenitors in xenograft models of hematopoietic toxicity, suggesting that permanently expressed CD33-specific CART cells would have unacceptable toxicity. To enhance the viability of CART33 as an option for AML, we designed a transiently expressed mRNA anti-CD33 CAR. Gene transfer was carried out by electroporation into T cells and resulted in high-level expression with potent but self-limited activity against AML. Thus our preclinical studies show potent activity of CART33 and indicate that transient expression of anti-CD33 CAR by RNA modification could be used in patients to avoid long-term myelosuppression. CART33 therapy could be used alone or as part of a preparative regimen prior to allogeneic transplantation in refractory AML.


Journal of Clinical Investigation | 2016

Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies

Marco Ruella; David M. Barrett; Saad S. Kenderian; Olga Shestova; Ted J. Hofmann; Jessica Perazzelli; Michael Klichinsky; Vania Aikawa; Farzana Nazimuddin; Miroslaw Kozlowski; John Scholler; Simon F. Lacey; J. Joseph Melenhorst; Jennifer J.D. Morrissette; David A. Christian; Christopher A. Hunter; Michael Kalos; David L. Porter; Carl H. June; Stephan A. Grupp; Saar Gill

Potent CD19-directed immunotherapies, such as chimeric antigen receptor T cells (CART) and blinatumomab, have drastically changed the outcome of patients with relapsed/refractory B cell acute lymphoblastic leukemia (B-ALL). However, CD19-negative relapses have emerged as a major problem that is observed in approximately 30% of treated patients. Developing approaches to preventing and treating antigen-loss escapes would therefore represent a vertical advance in the field. Here, we found that in primary patient samples, the IL-3 receptor α chain CD123 was highly expressed on leukemia-initiating cells and CD19-negative blasts in bulk B-ALL at baseline and at relapse after CART19 administration. Using intravital imaging in an antigen-loss CD19-negative relapse xenograft model, we determined that CART123, but not CART19, recognized leukemic blasts, established protracted synapses, and eradicated CD19-negative leukemia, leading to prolonged survival. Furthermore, combining CART19 and CART123 prevented antigen-loss relapses in xenograft models. Finally, we devised a dual CAR-expressing construct that combined CD19- and CD123-mediated T cell activation and demonstrated that it provides superior in vivo activity against B-ALL compared with single-expressing CART or pooled combination CART. In conclusion, these findings indicate that targeting CD19 and CD123 on leukemic blasts represents an effective strategy for treating and preventing antigen-loss relapses occurring after CD19-directed therapies.


Clinical Cancer Research | 2016

The Addition of the BTK Inhibitor Ibrutinib to Anti-CD19 Chimeric Antigen Receptor T Cells (CART19) Improves Responses against Mantle Cell Lymphoma

Marco Ruella; Saad S. Kenderian; Olga Shestova; Joseph A. Fraietta; Sohail Qayyum; Qian Zhang; Marcela V. Maus; Xiaobin Liu; Selene Nunez-Cruz; Michael Klichinsky; Omkar U. Kawalekar; Michael C. Milone; Simon F. Lacey; Anthony R. Mato; Stephen J. Schuster; Michael Kalos; Carl H. June; Saar Gill; Mariusz A. Wasik

Purpose: Responses to therapy with chimeric antigen receptor T cells recognizing CD19 (CART19, CTL019) may vary by histology. Mantle cell lymphoma (MCL) represents a B-cell malignancy that remains incurable despite novel therapies such as the BTK inhibitor ibrutinib, and where data from CTL019 therapy are scant. Using MCL as a model, we sought to build upon the outcomes from CTL019 and from ibrutinib therapy by combining these in a rational manner. Experimental Design: MCL cell lines and primary MCL samples were combined with autologous or normal donor-derived anti-CD19 CAR T cells along with ibrutinib. The effect of the combination was studied in vitro and in mouse xenograft models. Results: MCL cells strongly activated multiple CTL019 effector functions, and MCL killing by CTL019 was further enhanced in the presence of ibrutinib. In a xenograft MCL model, we showed superior disease control in the CTL019- as compared with ibrutinib-treated mice (median survival not reached vs. 95 days, P < 0.005) but most mice receiving CTL019 monotherapy eventually relapsed. Therefore, we added ibrutinib to CTL019 and showed that 80% to 100% of mice in the CTL019 + ibrutinib arm and 0% to 20% of mice in the CTL019 arm, respectively, remained in long-term remission (P < 0.05). Conclusions: Combining CTL019 with ibrutinib represents a rational way to incorporate two of the most recent therapies in MCL. Our findings pave the way to a two-pronged therapeutic strategy in patients with MCL and other types of B-cell lymphoma. Clin Cancer Res; 22(11); 2684–96. ©2016 AACR.


Cancer Research | 2014

Chimeric Antigen Receptor T-cell Therapy to Target Hematologic Malignancies

Saad S. Kenderian; Marco Ruella; Saar Gill; Michael Kalos

Several decades of humoral immunotherapy using monoclonal antibodies and cellular immunotherapy using hematopoietic cell transplantation have recently culminated in a successful merger: the development and clinical application of genetically engineered antibody-T cell chimeras. Also known as chimeric antigen receptor T cells (CAR T cells), these entities combine the exquisite antigen specificity of antibodies with the polyfunctionality and potency of cellular immunity and are a prime example of the potential for synthetic biology to treat disease. CAR T cells overcome several of the biologic obstacles that have historically hampered immunotherapy while providing fundamental mechanistic insights into cellular immunology and revealing new challenges in genetic engineering and target selection. Results from early-phase CAR T-cell-based clinical trials demonstrate the significant potential for this approach to affect dramatic and complete clinical responses while revealing novel toxicities associated with activation of potent and specific antitumor immunity.


Biology of Blood and Marrow Transplantation | 2017

Chimeric Antigen Receptor T Cells and Hematopoietic Cell Transplantation: How Not to Put the CART Before the Horse.

Saad S. Kenderian; David L. Porter; Saar Gill

Hematopoietic cell transplantation (HCT) remains an important and potentially curative option for most hematologic malignancies. As a form of immunotherapy, allogeneic HCT (allo-HCT) offers the potential for durable remissions but is limited by transplantation- related morbidity and mortality owing to organ toxicity, infection, and graft-versus-host disease. The recent positive outcomes of chimeric antigen receptor T (CART) cell therapy in B cell malignancies may herald a paradigm shift in the management of these disorders and perhaps other hematologic malignancies as well. Clinical trials are now needed to address the relative roles of CART cells and HCT in the context of transplantation-eligible patients. In this review, we summarize the state of the art of the development of CART cell therapy for leukemia, lymphoma, and myeloma and discuss our perspective of how CART cell therapy can be applied in the context of HCT.


Leukemia | 2017

Kinase inhibitor ibrutinib to prevent cytokine-release syndrome after anti-CD19 chimeric antigen receptor T cells for B-cell neoplasms

Marco Ruella; Saad S. Kenderian; Olga Shestova; Michael Klichinsky; J. Joseph Melenhorst; Mariusz A. Wasik; Simon F. Lacey; Carl H. June; Saar Gill

Kinase inhibitor ibrutinib to prevent cytokine-release syndrome after anti-CD19 chimeric antigen receptor T cells for B-cell neoplasms


Blood | 2017

Optimized Depletion of Chimeric Antigen Receptor T-Cells in Murine Xenograft Models of Human Acute Myeloid Leukemia

Sarah K. Tasian; Saad S. Kenderian; Feng Shen; Marco Ruella; Olga Shestova; Miroslaw Kozlowski; Yong Li; April Schrank-Hacker; Jennifer J.D. Morrissette; Martin Carroll; Carl H. June; Stephan A. Grupp; Saar Gill

We and others previously reported potent antileukemia efficacy of CD123-redirected chimeric antigen receptor (CAR) T cells in preclinical human acute myeloid leukemia (AML) models at the cost of severe hematologic toxicity. This observation raises concern for potential myeloablation in patients with AML treated with CD123-redirected CAR T cells and mandates novel approaches for toxicity mitigation. We hypothesized that CAR T-cell depletion with optimal timing after AML eradication would preserve leukemia remission and allow subsequent hematopoietic stem cell transplantation. To test this hypothesis, we compared 3 CAR T-cell termination strategies: (1) transiently active anti-CD123 messenger RNA-electroporated CART (RNA-CART123); (2) T-cell ablation with alemtuzumab after treatment with lentivirally transduced anti-CD123-4-1BB-CD3ζ T cells (CART123); and (3) T-cell ablation with rituximab after treatment with CD20-coexpressing CART123 (CART123-CD20). All approaches led to rapid leukemia elimination in murine xenograft models of human AML. Subsequent antibody-mediated depletion of CART123 or CART123-CD20 did not impair leukemia remission. Time-course studies demonstrated that durable leukemia remission required CAR T-cell persistence for 4 weeks prior to ablation. Upon CAR T-cell termination, we further demonstrated successful hematopoietic engraftment with a normal human donor to model allogeneic stem cell rescue. Results from these studies will facilitate development of T-cell depletion strategies to augment the feasibility of CAR T-cell therapy for patients with AML.


Leukemia & Lymphoma | 2017

Pharmacovigilance during ibrutinib therapy for chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL) in routine clinical practice.

Heidi D. Finnes; Kari G. Chaffee; Timothy G. Call; Wei Ding; Saad S. Kenderian; Deborah A. Bowen; Michael Conte; Kristen B. McCullough; Julianna A. Merten; Gabriel Bartoo; Matthew D. Smith; Jose F. Leis; Asher Chanan-Khan; Susan M. Schwager; Susan L. Slager; Neil E. Kay; Tait D. Shanafelt; Sameer A. Parikh

Abstract Due to Cytochrome P450 3A (CYP3A) metabolism, clinical trials of ibrutinib-treated chronic lymphocytic leukemia (CLL) patients prohibited concurrent medications metabolized by CYP3A. We evaluated concomitant medication use in 118 ibrutinib-treated CLL patients outside the context of clinical trials. Seventy-five (64%) patients were on medications that could increase ibrutinib toxicity and 4 (3%) were on drugs that could decrease ibrutinib efficacy. Nineteen (16%) patients were on concomitant CYP3A inhibitors (11 moderate, 8 strong), and 4 (3%) were on CYP3A inducers (two patients were on both CYP3A inhibitors and inducers). Although the ibrutinib starting dose was changed in 18 patients on CYP3A interacting medications, no difference in 18-month progression-free survival or rate of ibrutinib discontinuation was observed in patients who were not. In routine clinical practice, 2 of 3 CLL patients commencing ibrutinib are on a concomitant medication with potential to influence ibrutinib metabolism. Formal medication review by a pharmacist should be considered in all patients initiating ibrutinib.


Cancer Discovery | 2017

Overcoming the Immunosuppressive Tumor Microenvironment of Hodgkin Lymphoma Using Chimeric Antigen Receptor T Cells

Marco Ruella; Michael Klichinsky; Saad S. Kenderian; Olga Shestova; Amy Ziober; Daniel O. Kraft; Michael Feldman; Mariusz A. Wasik; Carl H. June; Saar Gill

Patients with otherwise treatment-resistant Hodgkin lymphoma could benefit from chimeric antigen receptor T-cell (CART) therapy. However, Hodgkin lymphoma lacks CD19 and contains a highly immunosuppressive tumor microenvironment (TME). We hypothesized that in Hodgkin lymphoma, CART should target both malignant cells and the TME. We demonstrated CD123 on both Hodgkin lymphoma cells and TME, including tumor-associated macrophages (TAM). In vitro, Hodgkin lymphoma cells convert macrophages toward immunosuppressive TAMs that inhibit T-cell proliferation. In contrast, anti-CD123 CART recognized and killed TAMs, thus overcoming immunosuppression. Finally, we showed in immunodeficient mouse models that CART123 eradicated Hodgkin lymphoma and established long-term immune memory. A novel platform that targets malignant cells and the microenvironment may be needed to successfully treat malignancies with an immunosuppressive milieu.Significance: Anti-CD123 chimeric antigen receptor T cells target both the malignant cells and TAMs in Hodgkin lymphoma, thereby eliminating an important immunosuppressive component of the tumor microenvironment. Cancer Discov; 7(10); 1154-67. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 1047.


BioDrugs | 2017

Next-Generation Chimeric Antigen Receptor T-Cell Therapy: Going off the Shelf

Marco Ruella; Saad S. Kenderian

Autologous, patient-specific chimeric antigen receptor T-cell (CART) therapy has emerged as a powerful and potentially curative therapy for cancer, especially for CD19-positive hematological malignancies. Indeed, on August 30, 2017, the University of Pennsylvania-designed CD19-directed CART (CART-19) cell therapy (CTL019, tisagenlecleucel-t, Kymriah - Novartis) became the first CART therapy approved by the Food and Drug Administration (FDA) for acute lymphoblastic leukemia. However, the development of CART technology and its wider application is partly limited by the patient-specific nature of such a platform and by the time required for manufacturing. The efficacious generation of universal allogeneic CART cells would overcome these limitations and represent a major advance in the field. However, several obstacles in the generation of universal CART cells need to be overcome, namely the risk of CART rejection and the risk of graft-versus-host disease mediated by the allogeneic CART. In this review, we discuss the different strategies being employed to generate universal CART and provide our perspective on the successful development of a truly off-the-shelf CART product.

Collaboration


Dive into the Saad S. Kenderian's collaboration.

Top Co-Authors

Avatar

Marco Ruella

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Saar Gill

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Carl H. June

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Olga Shestova

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David L. Porter

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon F. Lacey

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge