Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olga Shestova is active.

Publication


Featured researches published by Olga Shestova.


Cell Stem Cell | 2008

Canonical notch signaling is dispensable for the maintenance of adult hematopoietic stem cells.

Ivan Maillard; Ute Koch; Alexis Dumortier; Olga Shestova; Lanwei Xu; Hong Sai; Seth E. Pross; Avinash Bhandoola; Freddy Radtke

Gain-of-function experiments have demonstrated the potential of Notch signals to expand primitive hematopoietic progenitors, but whether Notch physiologically regulates hematopoietic stem cell (HSC) homeostasis in vivo is unclear. To answer this question, we evaluated the effect of global deficiencies of canonical Notch signaling in rigorous HSC assays. Hematopoietic progenitors expressing dominant-negative Mastermind-like1 (DNMAML), a potent inhibitor of Notch-mediated transcriptional activation, achieved stable long-term reconstitution of irradiated hosts and showed a normal frequency of progenitor fractions enriched for long-term HSCs. Similar results were observed with cells lacking CSL/RBPJ, a DNA-binding factor that is required for canonical Notch signaling. Notch-deprived progenitors provided normal long-term reconstitution after secondary competitive transplantation. Furthermore, Notch target genes were expressed at low levels in primitive hematopoietic progenitors. Taken together, these results rule out an essential physiological role for cell-autonomous canonical Notch signals in HSC maintenance.


Journal of Experimental Medicine | 2005

Notch signaling is an important regulator of type 2 immunity

LiLi Tu; Terry C. Fang; David Artis; Olga Shestova; Seth E. Pross; Ivan Maillard

Notch ligands and receptors have been implicated in helper T cell (Th cell) differentiation. Whether Notch signals are involved in differentiation of T helper type 1 (Th1) cells, Th2 cells, or both, however, remains unresolved. To clarify the role of Notch in Th cell differentiation, we generated mice that conditionally inactivate Notch signaling in mature T cells. Mice that lack Notch signaling in CD4+ T cells fail to develop a protective Th2 cell response against the gastrointestinal helminth Trichuris muris. In contrast, they exhibit effective Th1 cell responses and are able to control Leishmania major infection. These data demonstrate that Notch signaling is a regulator of type 2 immunity.


Nature | 2011

A critical role for TCF-1 in T-lineage specification and differentiation

Brittany Weber; Anthony W. S. Chi; Alejandro Chavez; Yumi Yashiro-Ohtani; Qi Yang; Olga Shestova; Avinash Bhandoola

The vertebrate thymus provides an inductive environment for T-cell development. Within the mouse thymus, Notch signals are indispensable for imposing the T-cell fate on multipotential haematopoietic progenitors, but the downstream effectors that impart T-lineage specification and commitment are not well understood. Here we show that a transcription factor, T-cell factor 1 (TCF-1; also known as transcription factor 7, T-cell specific, TCF7), is a critical regulator in T-cell specification. TCF-1 is highly expressed in the earliest thymic progenitors, and its expression is upregulated by Notch signals. Most importantly, when TCF-1 is forcibly expressed in bone marrow (BM) progenitors, it drives the development of T-lineage cells in the absence of T-inductive Notch1 signals. Further characterization of these TCF-1-induced cells revealed expression of many T-lineage genes, including T-cell-specific transcription factors Gata3 and Bcl11b, and components of the T-cell receptor. Our data suggest a model where Notch signals induce TCF-1, and TCF-1 in turn imprints the T-cell fate by upregulating expression of T-cell essential genes.


Journal of Experimental Medicine | 2006

The requirement for Notch signaling at the β-selection checkpoint in vivo is absolute and independent of the pre–T cell receptor

Ivan Maillard; LiLi Tu; Arivazhagan Sambandam; Yumi Yashiro-Ohtani; John M. Millholland; Karen Keeshan; Olga Shestova; Lanwei Xu; Avinash Bhandoola

Genetic inactivation of Notch signaling in CD4−CD8− double-negative (DN) thymocytes was previously shown to impair T cell receptor (TCR) gene rearrangement and to cause a partial block in CD4+CD8+ double-positive (DP) thymocyte development in mice. In contrast, in vitro cultures suggested that Notch was absolutely required for the generation of DP thymocytes independent of pre-TCR expression and activity. To resolve the respective role of Notch and the pre-TCR, we inhibited Notch-mediated transcriptional activation in vivo with a green fluorescent protein–tagged dominant-negative Mastermind-like 1 (DNMAML) that allowed us to track single cells incapable of Notch signaling. DNMAML expression in DN cells led to decreased production of DP thymocytes but only to a modest decrease in intracellular TCRβ expression. DNMAML attenuated the pre-TCR–associated increase in cell size and CD27 expression. TCRβ or TCRαβ transgenes failed to rescue DNMAML-related defects. Intrathymic injections of DNMAML− or DNMAML+ DN thymocytes revealed a complete DN/DP transition block, with production of DNMAML+ DP thymocytes only from cells undergoing late Notch inactivation. These findings indicate that the Notch requirement during the β-selection checkpoint in vivo is absolute and independent of the pre-TCR, and it depends on transcriptional activation by Notch via the CSL/RBP-J–MAML complex.


Genes & Development | 2009

Pre-TCR signaling inactivates Notch1 transcription by antagonizing E2A

Yumi Yashiro-Ohtani; Yiping He; Takuya Ohtani; Mary Elizabeth Jones; Olga Shestova; Lanwei Xu; Terry C. Fang; Mark Y. Chiang; Andrew M. Intlekofer; Stephen C. Blacklow; Yuan Zhuang

Precise control of the timing and magnitude of Notch signaling is essential for the normal development of many tissues, but the feedback loops that regulate Notch are poorly understood. Developing T cells provide an excellent context to address this issue. Notch1 signals initiate T-cell development and increase in intensity during maturation of early T-cell progenitors (ETP) to the DN3 stage. As DN3 cells undergo beta-selection, during which cells expressing functionally rearranged TCRbeta proliferate and differentiate into CD4(+)CD8(+) progeny, Notch1 signaling is abruptly down-regulated. In this report, we investigate the mechanisms that control Notch1 expression during thymopoiesis. We show that Notch1 and E2A directly regulate Notch1 transcription in pre-beta-selected thymocytes. Following successful beta-selection, pre-TCR signaling rapidly inhibits Notch1 transcription via signals that up-regulate Id3, an E2A inhibitor. Consistent with a regulatory role for Id3 in Notch1 down-regulation, post-beta-selected Id3-deficient thymocytes maintain Notch1 transcription, whereas enforced Id3 expression decreases Notch1 expression and abrogates Notch1-dependent T-cell survival. These data provide new insights into Notch1 regulation in T-cell progenitors and reveal a direct link between pre-TCR signaling and Notch1 expression during thymocyte development. Our findings also suggest new strategies for inhibiting Notch1 signaling in pathologic conditions.


Leukemia | 2015

CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia

Saad S. Kenderian; Marco Ruella; Olga Shestova; Michael Klichinsky; Vania Aikawa; Jennifer J.D. Morrissette; John Scholler; De-Gang Song; David L. Porter; Martin Carroll; Carl H. June; Saar Gill

Patients with chemo-refractory acute myeloid leukemia (AML) have a dismal prognosis. Chimeric antigen receptor T (CART) cell therapy has produced exciting results in CD19+ malignancies and may overcome many of the limitations of conventional leukemia therapies. We developed CART cells to target CD33 (CART33) using the anti-CD33 single chain variable fragment used in gemtuzumab ozogamicin (clone My96) and tested the activity and toxicity of these cells. CART33 exhibited significant effector functions in vitro and resulted in eradication of leukemia and prolonged survival in AML xenografts. CART33 also resulted in human lineage cytopenias and reduction of myeloid progenitors in xenograft models of hematopoietic toxicity, suggesting that permanently expressed CD33-specific CART cells would have unacceptable toxicity. To enhance the viability of CART33 as an option for AML, we designed a transiently expressed mRNA anti-CD33 CAR. Gene transfer was carried out by electroporation into T cells and resulted in high-level expression with potent but self-limited activity against AML. Thus our preclinical studies show potent activity of CART33 and indicate that transient expression of anti-CD33 CAR by RNA modification could be used in patients to avoid long-term myelosuppression. CART33 therapy could be used alone or as part of a preparative regimen prior to allogeneic transplantation in refractory AML.


Molecular and Cellular Biology | 2006

Identification of a Conserved Negative Regulatory Sequence That Influences the Leukemogenic Activity of NOTCH1

Mark Y. Chiang; Mina L. Xu; Gavin Histen; Olga Shestova; Monideepa Roy; Yunsun Nam; Stephen C. Blacklow; David B. Sacks

ABSTRACT NOTCH1 is a large type I transmembrane receptor that regulates normal T-cell development via a signaling pathway that relies on regulated proteolysis. Ligand binding induces proteolytic cleavages in NOTCH1 that release its intracellular domain (ICN1), which translocates to the nucleus and activates target genes by forming a short-lived nuclear complex with two other proteins, the DNA-binding factor CSL and a Mastermind-like (MAML) coactivator. Recent work has shown that human T-ALL is frequently associated with C-terminal NOTCH1 truncations, which uniformly remove sequences lying between residues 2524 and 2556. This region includes the highly conserved sequence WSSSSP (S4), which based on its amino acid content appeared to be a likely site for regulatory serine phosphorylation events. We show here that the mutation of the S4 sequence leads to hypophosphorylation of ICN1; increased NOTCH1 signaling; and the stabilization of complexes containing ICN1, CSL, and MAML1. Consistent with these in vitro studies, mutation of the WSSSSP sequence converts nonleukemogenic weak gain-of-function NOTCH1 alleles into alleles that cause aggressive T-ALLs in a murine bone marrow transplant model. These studies indicate that S4 is an important negative regulatory sequence and that the deletion of S4 likely contributes to the development of human T-ALL.


Journal of Clinical Investigation | 2016

Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies

Marco Ruella; David M. Barrett; Saad S. Kenderian; Olga Shestova; Ted J. Hofmann; Jessica Perazzelli; Michael Klichinsky; Vania Aikawa; Farzana Nazimuddin; Miroslaw Kozlowski; John Scholler; Simon F. Lacey; J. Joseph Melenhorst; Jennifer J.D. Morrissette; David A. Christian; Christopher A. Hunter; Michael Kalos; David L. Porter; Carl H. June; Stephan A. Grupp; Saar Gill

Potent CD19-directed immunotherapies, such as chimeric antigen receptor T cells (CART) and blinatumomab, have drastically changed the outcome of patients with relapsed/refractory B cell acute lymphoblastic leukemia (B-ALL). However, CD19-negative relapses have emerged as a major problem that is observed in approximately 30% of treated patients. Developing approaches to preventing and treating antigen-loss escapes would therefore represent a vertical advance in the field. Here, we found that in primary patient samples, the IL-3 receptor α chain CD123 was highly expressed on leukemia-initiating cells and CD19-negative blasts in bulk B-ALL at baseline and at relapse after CART19 administration. Using intravital imaging in an antigen-loss CD19-negative relapse xenograft model, we determined that CART123, but not CART19, recognized leukemic blasts, established protracted synapses, and eradicated CD19-negative leukemia, leading to prolonged survival. Furthermore, combining CART19 and CART123 prevented antigen-loss relapses in xenograft models. Finally, we devised a dual CAR-expressing construct that combined CD19- and CD123-mediated T cell activation and demonstrated that it provides superior in vivo activity against B-ALL compared with single-expressing CART or pooled combination CART. In conclusion, these findings indicate that targeting CD19 and CD123 on leukemic blasts represents an effective strategy for treating and preventing antigen-loss relapses occurring after CD19-directed therapies.


Blood | 2010

Differential ability of Tribbles family members to promote degradation of C/EBPα and induce acute myelogenous leukemia

Priya H. Dedhia; Karen Keeshan; Sacha N. Uljon; Lanwei Xu; Maria E. Vega; Olga Shestova; Meirav Zaks-Zilberman; Candice Romany; Stephen C. Blacklow

Trib1, Trib2, and Trib3 are mammalian homologs of Tribbles, an evolutionarily conserved Drosophila protein family that mediates protein degradation. Tribbles proteins function as adapters to recruit E3 ubiquitin ligases and enhance ubiquitylation of the target protein to promote its degradation. Increased Trib1 and Trib2 mRNA expression occurs in human myeloid leukemia and induces acute myeloid leukemia in mice, whereas Trib3 has not been associated with leukemia. Given the high degree of structural conservation among Tribbles family members, we directly compared the 3 mammalian Tribbles in hematopoietic cells by reconstituting mice with hematopoietic stem cells retrovirally expressing these proteins. All mice receiving Trib1 or Trib2 transduced hematopoietic stem cells developed acute myeloid leukemia, whereas Trib3 mice did not. Our previous data indicated that Trib2-mediated degradation of the transcription factor, CCAAT/enhancer-binding protein-alpha (C/EBPalpha), is important for leukemogenesis. Similar to Trib2, Trib1 induced C/EBPalpha degradation and inhibited its function. In contrast, Trib3 failed to inactivate or promote efficient degradation of C/EBPalpha. These data reveal that the 3 Tribbles homologs differ in their ability to promote degradation of C/EBPalpha, which account for their differential ability to induce leukemia.


Blood | 2010

Transformation by Tribbles homolog 2 (Trib2) requires both the Trib2 kinase domain and COP1 binding

Karen Keeshan; Will Bailis; Priya H. Dedhia; Maria E. Vega; Olga Shestova; Lanwei Xu; Sacha N. Uljon; Stephen C. Blacklow

Tribbles homolog 2 (Trib2) is a pseudokinase that induces acute myelogenous leukemia (AML) in mice and is highly expressed in a subset of human AML. Trib2 has 3 distinct regions, a proline-rich N-terminus, a serine/threonine kinase homology domain, and a C-terminal constitutive photomorphogenesis 1 (COP1)-binding domain. We performed a structure-function analysis of Trib2 using in vitro and in vivo assays. The N-terminus was not required for Trib2-induced AML. Deletion or mutation of the COP1-binding site abrogated the ability of Trib2 to degrade CCAAT/enhancer-binding protein-α (C/EBP-α), block granulocytic differentiation, and to induce AML in vivo. Furthermore, COP1 knockdown inhibited the ability of Trib2 to degrade C/EBP-α, showing that it is important for mediating Trib2 activity. We also show that the Trib2 kinase domain is essential for its function. Trib2 contains variant catalytic loop sequences, compared with conventional kinases, that we show are necessary for Trib2 activity. The kinase domain mutants bind, but cannot efficiently degrade, C/EBP-α. Together, our data demonstrate that Trib2 can bind both COP1 and C/EBP-α, leading to degradation of C/EBP-α. Identification of the functional regions of Trib2 that are essential to its oncogenic role provides the basis for developing inhibitors that will block Trib functions in cancer.

Collaboration


Dive into the Olga Shestova's collaboration.

Top Co-Authors

Avatar

Saar Gill

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Marco Ruella

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Carl H. June

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lanwei Xu

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

John Scholler

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Simon F. Lacey

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David L. Porter

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge