Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Saada Eid is active.

Publication


Featured researches published by Saada Eid.


Stem Cells | 2015

Human Mesenchymal Stromal Cells Attenuate Graft‐Versus‐Host Disease and Maintain Graft‐Versus‐Leukemia Activity Following Experimental Allogeneic Bone Marrow Transplantation

Jeffery J. Auletta; Saada Eid; Patiwet Wuttisarnwattana; Ines Silva; Leland Metheny; Matthew Keller; Rocio Guardia-Wolff; Chen Liu; Fangjing Wang; Theodore Bowen; Zhenghong Lee; Luis A. Solchaga; Sudipto Ganguly; Megan Tyler; David L. Wilson; Kenneth R. Cooke

We sought to define the effects and underlying mechanisms of human, marrow‐derived mesenchymal stromal cells (hMSCs) on graft‐versus‐host disease (GvHD) and graft‐versus‐leukemia (GvL) activity. Irradiated B6D2F1 mice given C57BL/6 BM and splenic T cells and treated with hMSCs had reduced systemic GvHD, donor T‐cell expansion, and serum TNFα and IFNγ levels. Bioluminescence imaging demonstrated that hMSCs redistributed from lungs to abdominal organs within 72 hours, and target tissues harvested from hMSC‐treated allogeneic BMT (alloBMT) mice had less GvHD than untreated controls. Cryoimaging more precisely revealed that hMSCs preferentially distributed to splenic marginal zones and regulated T‐cell expansion in the white pulp. Importantly, hMSCs had no effect on in vitro cytotoxic T‐cell activity and preserved potent GvL effects in vivo. Mixed leukocyte cultures containing hMSCs exhibited decreased T‐cell proliferation, reduced TNFα, IFNγ, and IL‐10 but increased PGE2 levels. Indomethacin and E‐prostanoid 2 (EP2) receptor antagonisms both reversed while EP2 agonism restored hMSC‐mediated in vitro T‐cell suppression, confirming the role for PGE2. Furthermore, cyclo‐oxygenase inhibition following alloBMT abrogated the protective effects of hMSCs. Together, our data show that hMSCs preserve GvL activity and attenuate GvHD and reveal that hMSC biodistribute to secondary lymphoid organs wherein they attenuate alloreactive T‐cell proliferation likely through PGE2 induction. Stem Cells 2015;33:601–614


Biology of Blood and Marrow Transplantation | 2015

TNF-receptor inhibitor therapy for the treatment of children with idiopathic pneumonia syndrome. a joint pediatric blood and marrow transplant consortium and children's oncology group study (ASCT0521)

Gregory A. Yanik; Stephan A. Grupp; Michael A. Pulsipher; John E. Levine; Kirk R. Schultz; Donna A. Wall; Bryan Langholz; Christopher C. Dvorak; Keith Alangaden; Rakesh K. Goyal; Eric S. White; Jennifer M. Collura; Micah Skeens; Saada Eid; Elizabeth M. Pierce; Kenneth R. Cooke

Idiopathic pneumonia syndrome (IPS) is an acute, noninfectious lung disorder associated with high morbidity and mortality after hematopoietic cell transplantation. Previous studies have suggested a role for TNFα in the pathogenesis of IPS. We report a multicenter phase II trial investigating a soluble TNF-binding protein, etanercept (Enbrel, Amgen, Thousand Oaks, CA), for the treatment of pediatric patients with IPS. Eligible patients were < 18 years old, within 120 days after transplantation, and with radiographic evidence of a diffuse pneumonitis. All patients underwent a pretherapy broncho-alveolor lavage (BAL) to establish the diagnosis of IPS. Systemic corticosteroids (2.0 mg/kg/day) plus etanercept (.4 mg/kg twice weekly × 8 doses) were administered. Response was defined as survival and discontinuation of supplemental oxygen support by day 28 of study. Thirty-nine patients (median age, 11 years; range, 1 to 17) were enrolled, with 11 of 39 patients nonevaluable because of identification of pathogens from their pretherapy BAL. In the remaining 28 patients, the median fraction of inspired oxygen at study entry was 45%, with 17 of 28 requiring mechanical ventilation. Complete responses were seen in 20 (71%) patients, with a median time to response of 10 days (range, 1 to 24). Response rates were higher for patients not requiring mechanical ventilation at study entry (100% versus 53%, P = .01). Overall survival at 28 days and 1 year after therapy were 89% (95% confidence interval [CI], 70% to 96%) and 63% (95% CI, 42% to 79%), respectively. Plasma levels of proinflammatory cytokines were significantly increased at onset of therapy, subsequently decreasing in responding patients. The addition of etanercept to high-dose corticosteroids was associated with high response rates and survival in children with IPS.


Molecular & Cellular Proteomics | 2012

Human Biomarker Discovery and Predictive Models for Disease Progression for Idiopathic Pneumonia Syndrome Following Allogeneic Stem Cell Transplantation

Daniela Schlatzer; Jean Eudes Dazard; Rob M. Ewing; Serguei Ilchenko; Sara E. Tomcheko; Saada Eid; Vincent T. Ho; Gregory Yanik; Mark R. Chance; Kenneth R. Cooke

Allogeneic hematopoietic stem cell transplantation (SCT) is the only curative therapy for many malignant and nonmalignant conditions. Idiopathic pneumonia syndrome (IPS) is a frequently fatal complication that limits successful outcomes. Preclinical models suggest that IPS represents an immune mediated attack on the lung involving elements of both the adaptive and the innate immune system. However, the etiology of IPS in humans is less well understood. To explore the disease pathway and uncover potential biomarkers of disease, we performed two separate label-free, proteomics experiments defining the plasma protein profiles of allogeneic SCT patients with IPS. Samples obtained from SCT recipients without complications served as controls. The initial discovery study, intended to explore the disease pathway in humans, identified a set of 81 IPS-associated proteins. These data revealed similarities between the known IPS pathways in mice and the condition in humans, in particular in the acute phase response. In addition, pattern recognition pathways were judged to be significant as a function of development of IPS, and from this pathway we chose the lipopolysaccaharide-binding protein (LBP) protein as a candidate molecular diagnostic for IPS, and verified its increase as a function of disease using an ELISA assay. In a separately designed study, we identified protein-based classifiers that could predict, at day 0 of SCT, patients who: 1) progress to IPS and 2) respond to cytokine neutralization therapy. Using cross-validation strategies, we built highly predictive classifier models of both disease progression and therapeutic response. In sum, data generated in this report confirm previous clinical and experimental findings, provide new insights into the pathophysiology of IPS, identify potential molecular classifiers of the condition, and uncover a set of markers potentially of interest for patient stratification as a basis for individualized therapy.


OncoImmunology | 2013

Murine leukemia virus envelope gp70 is a shared biomarker for the high-sensitivity quantification of murine tumor burden

Francesca Scrimieri; David S. Askew; David Corn; Saada Eid; Iuliana D. Bobanga; Jaclyn A Bjelac; Matthew Tsao; Frederick Allen; Youmna Othman; Shih-Chung G Wang; Alex Y. Huang

The preclinical development of anticancer drugs including immunotherapeutics and targeted agents relies on the ability to detect minimal residual tumor burden as a measure of therapeutic efficacy. Real-time quantitative (qPCR) represents an exquisitely sensitive method to perform such an assessment. However, qPCR-based applications are limited by the availability of a genetic defect associated with each tumor model under investigation. Here, we describe an off-the-shelf qPCR-based approach to detect a broad array of commonly used preclinical murine tumor models. In particular, we report that the mRNA coding for the envelope glycoprotein 70 (gp70) encoded by the endogenous murine leukemia virus (MuLV) is universally expressed in 22 murine cancer cell lines of disparate histological origin but is silent in 20 out of 22 normal mouse tissues. Further, we detected the presence of as few as 100 tumor cells in whole lung extracts using qPCR specific for gp70, supporting the notion that this detection approach has a higher sensitivity as compared with traditional tissue histology methods. Although gp70 is expressed in a wide variety of tumor cell lines, it was absent in inflamed tissues, non-transformed cell lines, or pre-cancerous lesions. Having a high-sensitivity biomarker for the detection of a wide range of murine tumor cells that does not require additional genetic manipulations or the knowledge of specific genetic alterations present in a given neoplasm represents a unique experimental tool for investigating metastasis, assessing antitumor therapeutic interventions, and further determining tumor recurrence or minimal residual disease.


Cellular and molecular gastroenterology and hepatology | 2015

Dysregulated Intrahepatic CD4+ T-Cell Activation Drives Liver Inflammation in Ileitis-Prone SAMP1/YitFc Mice

Sara Omenetti; Marco Brogi; Wendy A. Goodman; Colleen M. Croniger; Saada Eid; Alex Y. Huang; Giacomo Laffi; Tania Roskams; Fabio Cominelli; Massimo Pinzani; Theresa T. Pizarro

Background & Aims Liver inflammation is a common extraintestinal manifestation of inflammatory bowel disease (IBD), but whether liver involvement is a consequence of a primary intestinal defect or results from alternative pathogenic processes remains unclear. Therefore, we sought to determine the potential pathogenic mechanism(s) of concomitant liver inflammation in an established murine model of IBD. Methods Liver inflammation and immune cell subsets were characterized in ileitis-prone SAMP1/YitFc (SAMP) and AKR/J (AKR) control mice, lymphocyte-depleted SAMP (SAMPxRag-1−/−), and immunodeficient SCID recipient mice receiving SAMP or AKR donor CD4+ T cells. Proliferation and suppressive capacity of CD4+ T-effector (Teff) and T-regulatory (Treg) cells from gut-associated lymphoid tissue (GALT) and livers of SAMP and AKR mice were measured. Results Surprisingly, prominent inflammation was detected in 4-week-old SAMP livers before histologic evidence of ileitis, whereas both disease phenotypes were absent in age-matched AKR mice. SAMP liver disease was characterized by abundant infiltration of lymphocytes, required for hepatic inflammation to occur, a TH1-skewed environment, and phenotypically activated CD4+ T cells. SAMP intrahepatic CD4+ T cells also had the ability to induce liver and ileal inflammation when adoptively transferred into SCID recipients, whereas GALT-derived CD4+ T cells produced milder ileitis but not liver inflammation. Interestingly, SAMP intrahepatic CD4+ Teff cells showed increased proliferation compared with both SAMP GALT- and AKR liver-derived CD4+ Teff cells, and SAMP intrahepatic Tregs were decreased among CD4+ T cells and impaired in in vitro suppressive function compared with AKR. Conclusions Activated intrahepatic CD4+ T cells induce liver inflammation and contribute to experimental ileitis via locally impaired hepatic immunosuppressive function.


Frontiers in Immunology | 2017

CCL3 Enhances Antitumor Immune Priming in the Lymph Node via IFNγ with Dependency on Natural Killer Cells

Frederick Allen; Peter Rauhe; David Askew; Alexander Tong; Joseph Nthale; Saada Eid; Jay Myers; Caryn Tong; Alex Y. Huang

Lymph node (LN) plays a critical role in tumor cell survival outside of the primary tumor sites and dictates overall clinical response in many tumor types (1, 2). Previously, we and others have demonstrated that CCL3 plays an essential role in orchestrating T cell—antigen-presenting cell (APC) encounters in the draining LN following vaccination, and such interactions enhance the magnitude of the memory T cell pool (3–5). In the current study, we investigate the cellular responses in the tumor-draining lymph nodes (TDLNs) of a CCL3-secreting CT26 colon tumor (L3TU) as compared to wild-type tumor (WTTU) during the priming phase of an antitumor response (≤10 days). In comparison to WTTU, inoculation of L3TU resulted in suppressed tumor growth, a phenomenon that is accompanied by altered in vivo inflammatory responses on several fronts. Autologous tumor-derived CCL3 (aCCL3) secretion by L3TU bolstered the recruitment of T- and B-lymphocytes, tissue-migratory CD103+ dendritic cells (DCs), and CD49b+ natural killer (NK) cells, resulting in significant increases in the differentiation and activation of multiple Interferon-gamma (IFNγ)-producing leukocytes in the TDLN. During this early phase of immune priming, NK cells constitute the major producers of IFNγ in the TDLN. CCL3 also enhances CD8+ T cell proliferation and differentiation by augmenting DC capacity to drive T cell activation in the TDLN. Our results revealed that CCL3-dependent IFNγ production and CCL3-induced DC maturation drive the priming of effective antitumor immunity in the TDLN.


OncoImmunology | 2017

Adoptive natural killer cell therapy is effective in reducing pulmonary metastasis of Ewing sarcoma

Alexander Tong; Hasan Hashem; Saada Eid; Frederick Allen; Daniel Kingsley; Alex Y. Huang

ABSTRACT The survival of patients with metastatic or relapsed Ewing sarcoma (ES) remains dismal despite intensification of combination chemotherapy and radiotherapy, precipitating the need for novel alternative therapies with minimal side effects. Natural killer (NK) cells are promising additions to the field of cellular immunotherapy. Adoptive NK cell therapy has shown encouraging results in hematological malignancies. Despite these initial promising successes, however, NK cell therapy for solid tumors remains to be investigated using in vivo tumor models. The purpose of this study is to evaluate the efficacy of ex vivo expanded human NK cells in controlling primary and metastatic ES tumor growth in vitro and in vivo. Using membrane-bound IL-21 containing K562 (K562-mbIL-21) expansion platform, we were able to obtain sufficient numbers of expanded NK (eNK) cells that display favorable activation phenotypes and inflammatory cytokine secretion, along with a strong in vitro cytotoxic effect against ES. Furthermore, eNK therapy significantly decreased lung metastasis without any significant therapeutic effect in limiting primary tumor growth in an in vivo xenograft model. Our data demonstrate that eNK may be effective against pulmonary metastatic ES, but challenges remain to direct proper trafficking and augmenting the cytotoxic function of eNK to target primary tumor sites.


Blood | 2017

Cyclin-dependent kinase 5 activity is required for allogeneic T cell responses after hematopoietic cell transplantation in mice

David S. Askew; Tej K. Pareek; Saada Eid; Sudipto Ganguly; Megan Tyler; Alex Y. Huang; John J. Letterio; Kenneth R. Cooke

Molecular intermediates in T-cell activation pathways are crucial targets for the therapy and prevention of graft-versus-host disease (GVHD) following allogeneic hematopoietic cell transplantation (allo-HCT). We recently identified an essential role for cyclin-dependent kinase 5 (Cdk5) in T-cell activation and effector function, but the contribution of Cdk5 activity to the development of GVHD has not been explored. Using an established, preclinical, murine, GVHD model, we reveal that Cdk5 activity is increased in key target organs early after allo-HCT. We then generated chimeric mice (Cdk5+/+C or Cdk5-/-C) using hematopoietic progenitors from either embryonic day 16.5 Cdk5+/+ or Cdk5-/- embryos to enable analyses of the role of Cdk5 in GVHD, as germ line Cdk5 gene deletion is embryonically lethal. The immunophenotype of adult Cdk5-/-C mice is identical to control Cdk5+/+C mice. However, transplantation of donor Cdk5-/-C bone marrow and T cells dramatically reduced the severity of systemic and target organ GVHD. This phenotype is attributed to decreased T-cell migration to secondary lymphoid organs (SLOs), reduced in vivo proliferation within these organs, and fewer cytokine-producing donor T cells during GVHD development. Moreover, these defects in Cdk5-/- T-cell function are associated with altered CCR7 signaling following ligation by CCL19, a receptor:ligand interaction critical for T-cell migration into SLOs. Although Cdk5 activity in donor T cells contributed to graft-versus-tumor effects, pharmacologic inhibition of Cdk5 preserved leukemia-free survival. Collectively, our data implicate Cdk5 in allogeneic T-cell responses after HCT and as an important new target for therapeutic intervention.


Hematology & Medical Oncology | 2016

Intra-osseous Co-transplantation of CD34-selected Umbilical Cord Blood and Mesenchymal Stromal Cells

Leland Metheny; Saada Eid; Karen Lingas; Jane S. Reese; Howard Meyerson; Alexander Tong; Marcos de Lima; Alex Y. Huang

Human mesenchymal stromal cells (MSC) have been shown to support the growth and differentiation of hematopoietic stem cells (HSC). We hypothesized that intra-osseous (IO) co-transplantation of MSC and umbilical cord blood (UCB) may be effective in improving early HSC engraftment, as IO transplantation has been demonstrated to enhance UCB engraftment in NOD SCID-gamma (NSG) mice. Following non-lethal irradiation (300rads), 6 groups of NSG mice were studied: 1) intravenous (IV) UCB CD34+ cells, 2) IV UCB CD34+ cells and MSC, 3) IO UCB CD34+ cells, 4) IO UCB CD34+ cells and IO MSC, 5) IO UCB CD34+ cells and IV MSC, and 6) IV UCB CD34+ and IO MSC. Analysis of human-derived CD45+, CD3+, and CD19+ cells 6 weeks following transplant revealed the highest level of engraftment in the IO UCB plus IO MSC cohort. Bone marrow analysis of human CD13 and CD14 markers revealed no significant difference between cohorts. We observed that IO MSC and UCB co-transplantation led to superior engraftment of CD45+, CD3+ and CD19+ lineage cells in the bone marrow at 6 weeks as compared with the IV UCB cohort controls. Our data suggests that IO co-transplantation of MSC and UCB facilitates human HSC engraftment in NSG mice.


Proceedings of SPIE | 2014

Novel T lymphocyte proliferation assessment using whole mouse cryo-imaging

Patiwet Wuttisarnwattana; Syed Ali Raza; Saada Eid; Kenneth R. Cooke; David L. Wilson

New imaging technologies enable one to assess T-cell proliferation, an important feature of the immunological response. However, none of the traditional imaging modalities allow one to examine quantiatively T-cell function with microscopic resolution and single cell sensitivity over an entire mouse. To address this need, we established T-cells proliferation assays using 3D microscopic cryo-imaging. Assays include: (1) biodistribution of T-cells, (2) secondary lymphoid organ (SLO) volume measurement, (3) carboxyfluorescein succinimidyl ester (CFSE) dilution per cell as cells divide. To demonstrate the application, a graft-versus-host-disease (GVHD) model was used. 3D visualization show that T-cells specifically homed to the SLOs (spleen and lymph nodes) as well as GVHD target organs (such as GI-tract, liver, skin and thymus).The spleen was chosen as representative of the SLOs. For spleen size analysis, volumes of red and white pulp were measured. Spleen volumes of the allogeneic mice (with GVHD) were significantly larger than those of the syngeneic mice (without GVHD) at 72 to 120 hours post-transplant. For CFSE dilution approach, we employed color-coded volume rendering and probability density function (PDF) of single cell intensity to assess T-cell proliferation in the spleen. As compared to syngeneic T-cells, the allogeneic T-cells quickly aggregated in the spleen as indicated by increasing of CFSE signal over the first 48 hours. Then they rapidly proliferated as evidenced by reduced CFSE intensity (at 48-96 hours). Results suggest that assays can be used to study GVHD treatments using T-cell proliferation and biodistibution as assays. In summary, this is the first time that we are able to track and visualize T-cells in whole mouse with single cell sensitivity. We believe that our technique can be an alternative choice to traditional in vitro immunological proliferation assays by providing assessment of proliferation in an in vivo model.

Collaboration


Dive into the Saada Eid's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex Y. Huang

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Leland Metheny

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

David Askew

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Alexander Tong

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elizabeth M. Pierce

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Frederick Allen

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffery J. Auletta

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge