Sabina Barresi
Boston Children's Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sabina Barresi.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Ginevra Zanni; Tito Calì; Vera M. Kalscheuer; Denis Ottolini; Sabina Barresi; Nicolas Lebrun; Luisa Montecchi-Palazzi; Hao Hu; Jamel Chelly; Enrico Bertini; Marisa Brini; Ernesto Carafoli
Ca2+ in neurons is vital to processes such as neurotransmission, neurotoxicity, synaptic development, and gene expression. Disruption of Ca2+ homeostasis occurs in brain aging and in neurodegenerative disorders. Membrane transporters, among them the calmodulin (CaM)-activated plasma membrane Ca2+ ATPases (PMCAs) that extrude Ca2+ from the cell, play a key role in neuronal Ca2+ homeostasis. Using X-exome sequencing we have identified a missense mutation (G1107D) in the CaM-binding domain of isoform 3 of the PMCAs in a family with X-linked congenital cerebellar ataxia. PMCA3 is highly expressed in the cerebellum, particularly in the presynaptic terminals of parallel fibers–Purkinje neurons. To study the effects of the mutation on Ca2+ extrusion by the pump, model cells (HeLa) were cotransfected with expression plasmids encoding its mutant or wild-type (wt) variants and with the Ca2+-sensing probe aequorin. The mutation reduced the ability of the PMCA3 pump to control the cellular homeostasis of Ca2+. It significantly slowed the return to baseline of the Ca2+ transient induced by an inositol-trisphosphate (InsP3)-linked plasma membrane agonist. It also compromised the ability of the pump to oppose the influx of Ca2+ through the plasma membrane capacitative channels.
Orphanet Journal of Rare Diseases | 2012
Lydie Burglen; Sandra Chantot-Bastaraud; Catherine Garel; Mathieu Milh; Renaud Touraine; Ginevra Zanni; Florence Petit; Alexandra Afenjar; Cyril Goizet; Sabina Barresi; Aurélie Coussement; Christine Ioos; Leila Lazaro; Sylvie Joriot; Isabelle Desguerre; Didier Lacombe; Vincent des Portes; Enrico Bertini; Jean Pierre Siffroi; Thierry Billette de Villemeur; Diana Rodriguez
BackgroundPontocerebellar hypoplasia (PCH) is a heterogeneous group of diseases characterized by lack of development and/or early neurodegeneration of cerebellum and brainstem. According to clinical features, seven subtypes of PCH have been described, PCH type 2 related to TSEN54 mutations being the most frequent. PCH is most often autosomal recessive though de novo anomalies in the X-linked gene CASK have recently been identified in patients, mostly females, presenting with intellectual disability, microcephaly and PCH (MICPCH).MethodsFourteen patients (12 females and two males; aged 16 months-14 years) presenting with PCH at neuroimaging and with clinical characteristics unsuggestive of PCH1 or PCH2 were included. The CASK gene screening was performed using Array-CGH and sequencing. Clinical and neuroradiological features were collected.ResultsWe observed a high frequency of patients with a CASK mutation (13/14). Ten patients (8 girls and 2 boys) had intragenic mutations and three female patients had a Xp11.4 submicroscopic deletion including the CASK gene. All were de novo mutations. Phenotype was variable in severity but highly similar among the 11 girls and was characterized by psychomotor retardation, severe intellectual disability, progressive microcephaly, dystonia, mild dysmorphism, and scoliosis. Other signs were frequently associated, such as growth retardation, ophthalmologic anomalies (glaucoma, megalocornea and optic atrophy), deafness and epilepsy. As expected in an X-linked disease manifesting mainly in females, the boy hemizygous for a splice mutation had a very severe phenotype with nearly no development and refractory epilepsy. We described a mild phenotype in a boy with a mosaic truncating mutation. We found some degree of correlation between severity of the vermis hypoplasia and clinical phenotype.ConclusionThis study describes a new series of PCH female patients with CASK inactivating mutations and confirms that these patients have a recognizable although variable phenotype consisting of a specific form of pontocerebellar hypoplasia. In addition, we report the second male patient to present with a severe MICPCH phenotype and a de novo CASK mutation and describe for the first time a mildly affected male patient harboring a mosaic mutation. In our reference centre, CASK related PCH is the second most frequent cause of PCH. The identification of a de novo mutation in these patients enables accurate and reassuring genetic counselling.
Neurogenetics | 2013
Ginevra Zanni; C. Scotton; Chiara Passarelli; Mingyan Fang; Sabina Barresi; Bruno Dallapiccola; Bin Wu; Francesca Gualandi; Alessandra Ferlini; Enrico Bertini; Wang Wei
Whole exome sequencing in two-generational kindred from Bangladesh with early onset spasticity, mild intellectual disability, distal amyotrophy, and cerebellar atrophy transmitted as an autosomal recessive trait identified the following two missense mutations in the EXOSC3 gene: a novel p.V80F mutation and a known p.D132A change previously associated with mild variants of pontocerebellar hypoplasia type 1. This study confirms the involvement of RNA processing proteins in disorders with motor neuron and cerebellar degeneration overlapping with spinocerebellar ataxia 36 and rare forms of hereditary spastic paraplegia with cerebellar features.
European Journal of Paediatric Neurology | 2012
Alessandra Terracciano; Florence Renaldo; Ginevra Zanni; Adele D'Amico; Anna Pastore; Sabina Barresi; Enza Maria Valente; Fiorella Piemonte; Giulia Tozzi; Rosalba Carrozzo; Massimiliano Valeriani; Renata Boldrini; Eugenio Mercuri; Filippo M. Santorelli; Enrico Bertini
Childhood cerebellar ataxias, and particularly congenital ataxias, are heterogeneous disorders and several remain undefined. We performed a muscle biopsy in patients with congenital ataxia and children with later onset undefined ataxia having neuroimaging evidence of cerebellar atrophy. Significant reduced levels of Coenzyme Q10 (COQ10) were found in the skeletal muscle of 9 out of 34 patients that were consecutively screened. A mutation in the ADCK3/Coq8 gene (R347X) was identified in a female patient with ataxia, seizures and markedly reduced COQ10 levels. In a 2.5-years-old male patient with non syndromic congenital ataxia and autophagic vacuoles in the muscle biopsy we identified a homozygous nonsense mutation R111X mutation in SIL1 gene, leading to early diagnosis of Marinesco-Sjogren syndrome. We think that muscle biopsy is a valuable procedure to improve diagnostic assesement in children with congenital ataxia or other undefined forms of later onset childhood ataxia associated to cerebellar atrophy at MRI.
American Journal of Human Genetics | 2016
Antonella Sferra; Gilbert Baillat; Teresa Rizza; Sabina Barresi; Elisabetta Flex; Giorgio A. Tasca; Adele D’Amico; Emanuele Bellacchio; Andrea Ciolfi; Viviana Caputo; Serena Cecchetti; Annalaura Torella; Ginevra Zanni; Daria Diodato; Emanuela Piermarini; Marcello Niceta; Antonietta Coppola; Enrico Tedeschi; Diego Martinelli; Carlo Dionisi-Vici; Vincenzo Nigro; Bruno Dallapiccola; Claudia Compagnucci; Marco Tartaglia; Georg Haase; Enrico Bertini
Tubulinopathies constitute a family of neurodevelopmental/neurodegenerative disorders caused by mutations in several genes encoding tubulin isoforms. Loss-of-function mutations in TBCE, encoding one of the five tubulin-specific chaperones involved in tubulin folding and polymerization, cause two rare neurodevelopmental syndromes, hypoparathyroidism-retardation-dysmorphism and Kenny-Caffey syndrome. Although a missense mutation in Tbce has been associated with progressive distal motor neuronopathy in the pmn/pmn mice, no similar degenerative phenotype has been recognized in humans. We report on the identification of an early-onset and progressive neurodegenerative encephalopathy with distal spinal muscular atrophy resembling the phenotype of pmn/pmn mice and caused by biallelic TBCE mutations, with the c.464T>A (p.Ile155Asn) change occurring at the heterozygous/homozygous state in six affected subjects from four unrelated families originated from the same geographical area in Southern Italy. Western blot analysis of patient fibroblasts documented a reduced amount of TBCE, suggestive of rapid degradation of the mutant protein, similarly to what was observed in pmn/pmn fibroblasts. The impact of TBCE mutations on microtubule polymerization was determined using biochemical fractionation and analyzing the nucleation and growth of microtubules at the centrosome and extracentrosomal sites after treatment with nocodazole. Primary fibroblasts obtained from affected subjects displayed a reduced level of polymerized α-tubulin, similarly to tail fibroblasts of pmn/pmn mice. Moreover, markedly delayed microtubule re-polymerization and abnormal mitotic spindles with disorganized microtubule arrangement were also documented. Although loss of function of TBCE has been documented to impact multiple developmental processes, the present findings provide evidence that hypomorphic TBCE mutations primarily drive neurodegeneration.
Epilepsy Research | 2014
Ginevra Zanni; Sabina Barresi; Roni Cohen; Nicola Specchio; Lina Basel-Vanagaite; Enza Maria Valente; Avinoam Shuper; Federico Vigevano; Enrico Bertini
Mutations in the solute carrier family 9, subfamily A member 6 (SLC9A6) gene, encoding the endosomal Na+/H+ exchanger 6 (NHE6) are associated with Christianson syndrome, a syndromic form of X-linked intellectual disability characterized by microcephaly, severe global developmental delay, autistic behavior, early onset seizures and ataxia. In a 7-year-old boy with characteristic clinical and neuroimaging features of Christianson syndrome and epileptic encephalopathy with continuous spikes and waves during sleep, we identified a novel splice site mutation (IVS10-1G>A) in SLC9A6. These findings expand the clinical spectrum of the syndrome and indicate NHE6 dysfunction as a new cause of electrical status epilepticus during slow-wave sleep (ESES).
PLOS ONE | 2014
Sabina Barresi; Sara Tomaselli; Alekos Athanasiadis; Federica Galeano; Franco Locatelli; Enrico Bertini; Ginevra Zanni; Angela Gallo
Oligophrenin-1 (OPHN1) encodes for a Rho-GTPase-activating protein, important for dendritic morphogenesis and synaptic function. Mutations in this gene have been identified in patients with X-linked intellectual disability associated with cerebellar hypoplasia. ADAR enzymes are responsible for A-to-I RNA editing, an essential post-transcriptional RNA modification contributing to transcriptome and proteome diversification. Specifically, ADAR2 activity is essential for brain development and function. Herein, we show that the OPHN1 transcript undergoes post-transcriptional modifications such as A-to-I RNA editing and alternative splicing in human brain and other tissues. We found that OPHN1 editing is detectable already at the 18th week of gestation in human brain with a boost of editing at weeks 20 to 33, concomitantly with OPHN1 expression increase and the appearance of a novel OPHN1 splicing isoform. Our results demonstrate that multiple post-transcriptional events occur on OPHN1, a gene playing an important role in brain function and development.
European Journal of Paediatric Neurology | 2013
Ginevra Zanni; Giovanna Stefania Colafati; Sabina Barresi; Francesco Randisi; Lorenzo Figà Talamanca; Elisabetta Genovese; Emanuele Bellacchio; Andrea Bartuli; Bruno De Bernardi; Enrico Bertini
Mutations of TUBA1A gene were first identified as causing a distinctive neuroradiologic phenotype characterized by cortical abnormalities ranging from classical lissencephaly to perisylvian pachygyria with dysgenetic corpus callosum, brainstem and cerebellum. We describe the clinical and neuroradiological features of a 3 years old girl carrying a novel missense TUBA1A mutation associated with asymmetrical polymicrogyria and provide structural data about the mutation. Our case confirm that the spectrum of tubulin-related cortical phenotypes is wide and that the screening of these genes should be implemented in patients with mid-hindbrain dysgenesis, partial of complete corpus callosum agenesis and varying degrees of cortical abnormalities.
Clinical Genetics | 2017
Sabina Barresi; Marcello Niceta; Paolo Alfieri; V. Brankovic; Giorgia Piccini; Alessandro Bruselles; M.R. Barone; R. Cusmai; Marco Tartaglia; Enrico Bertini; Ginevra Zanni
Congenital ataxias are nonprogressive neurological disorders characterized by neonatal hypotonia, developmental delay and ataxia, variably associated with intellectual disability and other neurological or extraneurological features. We performed trio‐based whole‐exome sequencing of 12 families with congenital cerebellar and/or vermis atrophy in parallel with targeted next‐generation sequencing of known ataxia genes (CACNA1A, ITPR1, KCNC3, ATP2B3 and GRM1) in 12 additional patients with a similar phenotype. Novel pathological mutations of ITPR1 (inositol 1,4,5‐trisphosphate receptor, type 1) were found in seven patients from four families (4/24, ∼16.8%) all localized in the IRBIT (inositol triphosphate receptor binding protein) domain which plays an essential role in the regulation of neuronal plasticity and development. Our study expands the mutational spectrum of ITPR1‐related congenital ataxia and indicates that ITPR1 gene screening should be implemented in this subgroup of ataxias.
Neurogenetics | 2013
C. C. Quattrocchi; Ginevra Zanni; Antonio Napolitano; Daniela Longo; Duccio Maria Cordelli; Sabina Barresi; Francesco Randisi; Enza Maria Valente; Tommaso Verdolotti; Elisabetta Genovese; Nicola Specchio; Giuseppina Vitiello; Ronen Spiegel; Enrico Bertini; Bruno De Bernardi
GPR56-related bilateral frontoparietal polymicrogyria (BFPP) is a rare recessively inherited disorder of neuronal migration caused by mutations of GPR56. To better delineate the clinical, molecular, and neuroradiological phenotypes associated with BFPP, we performed conventional magnetic resonance imaging and diffusion tensor imaging studies in a series of prospectively enrolled patients carrying novel GPR56 mutations. All subjects with GPR56-related BFPP showed a characteristic morphological pattern, including abnormalities of the cerebellar cortex with cerebellar cysts located at the periphery, a mildly thick corpus callosum, and a flat pons. Significant alterations of myelination and white matter tract abnormalities were documented. The present study confirms the phenotypic overlap between GPR56-related brain dysgenesis and other cobblestone-like syndromes and illustrates the contribution of 3D neuroimaging in the characterization of malformations of cortical development.