Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sabine Ameling is active.

Publication


Featured researches published by Sabine Ameling.


Journal of the American College of Cardiology | 2010

Rac1-Induced Connective Tissue Growth Factor Regulates Connexin 43 and N-Cadherin Expression in Atrial Fibrillation

Oliver Adam; Daniel Lavall; Katharina Theobald; Mathias Hohl; Markus Grube; Sabine Ameling; Mark A. Sussman; Stephan Rosenkranz; Heyo K. Kroemer; Hans-Joachim Schäfers; Michael Böhm; Ulrich Laufs

OBJECTIVES We studied the signal transduction of atrial structural remodeling that contributes to the pathogenesis of atrial fibrillation (AF). BACKGROUND Fibrosis is a hallmark of arrhythmogenic structural remodeling, but the underlying molecular mechanisms are incompletely understood. METHODS We performed transcriptional profiling of left atrial myocardium from patients with AF and sinus rhythm and applied cultured primary cardiac cells and transgenic mice with overexpression of constitutively active V12Rac1 (RacET) in which AF develops at old age to characterize mediators of the signal transduction of atrial remodeling. RESULTS Left atrial myocardium from patients with AF showed a marked up-regulation of connective tissue growth factor (CTGF) expression compared with sinus rhythm patients. This was associated with increased fibrosis, nicotinamide adenine dinucleotide phosphate oxidase, Rac1 and RhoA activity, up-regulation of N-cadherin and connexin 43 (Cx43) expression, and increased angiotensin II tissue concentration. In neonatal rat cardiomyocytes and fibroblasts, a specific small molecule inhibitor of Rac1 or simvastatin completely prevented the angiotensin II-induced up-regulation of CTGF, Cx43, and N-cadherin expression. Transfection with small-inhibiting CTGF ribonucleic acid blocked Cx43 and N-cadherin expression. RacET mice showed up-regulation of CTGF, Cx43, and N-cadherin protein expression. Inhibition of Rac1 by oral statin treatment prevented these effects, identifying Rac1 as a key regulator of CTGF in vivo. CONCLUSIONS The data identify CTGF as an important mediator of atrial structural remodeling during AF. Angiotensin II activates CTGF via activation of Rac1 and nicotinamide adenine dinucleotide phosphate oxidase, leading to up-regulation of Cx43, N-cadherin, and interstitial fibrosis and therefore contributing to the signal transduction of atrial structural remodeling.


Journal of Molecular and Cellular Cardiology | 2011

Increased lysyl oxidase expression and collagen cross-linking during atrial fibrillation

Oliver Adam; Katharina Theobald; Daniel Lavall; Markus Grube; Heyo K. Kroemer; Sabine Ameling; Hans-Joachim Schäfers; Michael Böhm; Ulrich Laufs

The aim of the study is to characterize the signal transduction leading to interstitial fibrosis in the pathogenesis of atrial fibrillation (AF) and atrial remodeling. Samples of the left atrial appendage (LA) from patients with AF showed higher collagen content (73 ± 5 vs. 38 ± 2 μg/mg protein) and 2.5-fold increased collagen crosslinking compared to patients with sinus rhythm (SR). Affymetrix-assays, RT-PCR and western Blot analysis revealed that LA of AF patients are characterized by increased lysyl oxidase (LOX) mRNA (218 ± 42%) and protein (253 ± 11%) expression. This was associated with increased expression of connective tissue growth factor (CTGF), fibronectin and Rac1 activity compared to SR. In neonatal cardiac fibroblasts, the Rac1 specific small molecule inhibitor NSC23766 prevented angiotensin II (AngII) induced upregulation of LOX (214 ± 16%) expression. Inhibition of CTGF by siRNA transfections completely inhibited AngII induced LOX expression. The LOX specific small molecule inhibitor BAPN prevented AngII and CTGF induced fibronectin expression. Left atria of transgenic mice with cardiac overexpression of Rac1 (RacET) that develop AF at high age exhibited upregulation of CTGF as well as LOX (187 ± 7%) and fibronectin (627 ± 146%) expression. Atria of RacET showed increased collagen content (28 ± 2 μg/mg protein) and crosslinking (10 ± 0.7) compared to wildtypes (20 ± 0.4 μg/mg protein; 5 ± 0.9). Left atrial myocardium of patients with atrial fibrillation is characterized by increased lysyl oxidase and fibronectin expression as well as collagen cross-linking. In cardiac fibroblasts, Rac1 GTPase mediates upregulation of fibronectin via LOX and CTGF. Inhibition of this signaling pathway may therefore represent a target for the prevention of fibrotic atrial remodeling.


BMC Medical Genomics | 2015

Associations of circulating plasma microRNAs with age, body mass index and sex in a population-based study

Sabine Ameling; Tim Kacprowski; Ravi Kumar Chilukoti; Carolin Malsch; Volkmar Liebscher; Karsten Suhre; Maik Pietzner; Nele Friedrich; Georg Homuth; Elke Hammer; Uwe Völker

BackgroundNon-cellular blood circulating microRNAs (plasma miRNAs) represent a promising source for the development of prognostic and diagnostic tools owing to their minimally invasive sampling, high stability, and simple quantification by standard techniques such as RT-qPCR. So far, the majority of association studies involving plasma miRNAs were disease-specific case-control analyses. In contrast, in the present study, plasma miRNAs were analysed in a sample of 372 individuals from a population-based cohort study, the Study of Health in Pomerania (SHIP).MethodsQuantification of miRNA levels was performed by RT-qPCR using the Exiqon Serum/Plasma Focus microRNA PCR Panel V3.M covering 179 different miRNAs. Of these, 155 were included in our analyses after quality-control. Associations between plasma miRNAs and the phenotypes age, body mass index (BMI), and sex were assessed via a two-step linear regression approach per miRNA. The first step regressed out the technical parameters and the second step determined the remaining associations between the respective plasma miRNA and the phenotypes of interest.ResultsAfter regressing out technical parameters and adjusting for the respective other two phenotypes, 7, 15, and 35 plasma miRNAs were significantly (q < 0.05) associated with age, BMI, and sex, respectively. Additional adjustment for the blood cell parameters identified 12 and 19 miRNAs to be significantly associated with age and BMI, respectively. Most of the BMI-associated miRNAs likely originate from liver. Sex-associated differences in miRNA levels were largely determined by differences in blood cell parameters. Thus, only 7 as compared to originally 35 sex-associated miRNAs displayed sex-specific differences after adjustment for blood cell parameters.ConclusionsThese findings emphasize that circulating miRNAs are strongly impacted by age, BMI, and sex. Hence, these parameters should be considered as covariates in association studies based on plasma miRNA levels. The established experimental and computational workflow can now be used in future screening studies to determine associations of plasma miRNAs with defined disease phenotypes.


European Heart Journal | 2013

Myocardial gene expression profiles and cardiodepressant autoantibodies predict response of patients with dilated cardiomyopathy to immunoadsorption therapy

Sabine Ameling; Lars R. Herda; Elke Hammer; Leif Steil; Alexander Teumer; Christiane Trimpert; Marcus Dörr; Heyo K. Kroemer; Karin Klingel; Reinhard Kandolf; Uwe Völker; Stephan B. Felix

Aims Immunoadsorption with subsequent immunoglobulin G substitution (IA/IgG) represents a novel therapeutic approach in the treatment of dilated cardiomyopathy (DCM) which leads to the improvement of left ventricular ejection fraction (LVEF). However, response to this therapeutic intervention shows wide inter-individual variability. In this pilot study, we tested the value of clinical, biochemical, and molecular parameters for the prediction of the response of patients with DCM to IA/IgG. Methods and results Forty DCM patients underwent endomyocardial biopsies (EMBs) before IA/IgG. In eight patients with normal LVEF (controls), EMBs were obtained for clinical reasons. Clinical parameters, negative inotropic activity (NIA) of antibodies on isolated rat cardiomyocytes, and gene expression profiles of EMBs were analysed. Dilated cardiomyopathy patients displaying improvement of LVEF (≥20 relative and ≥5% absolute) 6 months after IA/IgG were considered responders. Compared with non-responders (n = 16), responders (n = 24) displayed shorter disease duration (P = 0.006), smaller LV internal diameter in diastole (P = 0.019), and stronger NIA of antibodies. Antibodies obtained from controls were devoid of NIA. Myocardial gene expression patterns were different in responders and non-responders for genes of oxidative phosphorylation, mitochondrial dysfunction, hypertrophy, and ubiquitin–proteasome pathway. The integration of scores of NIA and expression levels of four genes allowed robust discrimination of responders from non-responders at baseline (BL) [sensitivity of 100% (95% CI 85.8–100%); specificity up to 100% (95% CI 79.4–100%); cut-off value: −0.28] and was superior to scores derived from antibodies, gene expression, or clinical parameters only. Conclusion Combined assessment of NIA of antibodies and gene expression patterns of DCM patients at BL predicts response to IA/IgG therapy and may enable appropriate selection of patients who benefit from this therapeutic intervention.


American Journal of Pathology | 2011

Selective Regulation of Cardiac Organic Cation Transporter Novel Type 2 (OCTN2) in Dilated Cardiomyopathy

Markus Grube; Sabine Ameling; Michel Noutsias; Kathleen Köck; Ivonne Triebel; Karina Bonitz; Konrad Meissner; Gabriele Jedlitschky; Lars R. Herda; Markus Reinthaler; Maria Rohde; Wolfgang Hoffmann; Uwe Kühl; Heinz-Peter Schultheiss; Uwe Völker; Stephan B. Felix; Karin Klingel; Reinhard Kandolf; Heyo K. Kroemer

Organic cation transporters (OCT1-3 and OCTN1/2) facilitate cardiac uptake of endogenous compounds and numerous drugs. Genetic variants of OCTN2, for example, reduce uptake of carnitine, leading to heart failure. Whether expression and function of OCTs and OCTNs are altered by disease has not been explored in detail. We therefore studied cardiac expression, heart failure-dependent regulation, and affinity to cardiovascular drugs of these transporters. Cardiac transporter mRNA levels were OCTN2>OCT3>OCTN1>OCT1 (OCT2 was not detected). Proteins were localized in vascular structures (OCT3/OCTN2/OCTN1) and cardiomyocytes (OCT1/OCTN1). Functional studies revealed a specific drug-interaction profile with pronounced inhibition of OCT1 function, for example, carvedilol [half maximal inhibitory concentration (IC₅₀), 1.4 μmol/L], diltiazem (IC₅₀, 1.7 μmol/L), or propafenone (IC₅₀, 1.0 μmol/L). With use of the cardiomyopathy model of coxsackievirus-infected mice, Octn2mRNA expression was significantly reduced (56% of controls, 8 days after infection). Accordingly, in endomyocardial biopsy specimens OCTN2 expression was significantly reduced in patients with dilated cardiomyopathy, whereas the expression of OCT1-3 and OCTN1 was not affected. For OCTN2 we observed a significant correlation between expression and left ventricular ejection fraction (r = 0.53, P < 0.0001) and the presence of cardiac CD3⁺ T cells (r = -0.45, P < 0.05), respectively. OCT1, OCT3, OCTN1, and OCTN2 are expressed in the human heart and interact with cardiovascular drugs. OCTN2 expression is selectively reduced in dilated cardiomyopathy patients and predicts the impairment of cardiac function.


Molecular Pharmacology | 2012

Regulation of Interferon-Inducible Proteins by Doxorubicin via Interferon γ-Janus Tyrosine Kinase-Signal Transducer and Activator of Transcription Signaling in Tumor Cells

Janine Hussner; Sabine Ameling; Elke Hammer; Susann Herzog; Leif Steil; Matthias Schwebe; Juliane Niessen; Henry Ws Schroeder; Heyo K. Kroemer; Christoph A. Ritter; Uwe Völker; Sandra Bien

Activation of the immune system is a way for host tissue to defend itself against tumor growth. Hence, treatment strategies that are based on immunomodulation are on the rise. Conventional cytostatic drugs such as the anthracycline doxorubicin can also activate immune cell functions of macrophages and natural killer cells. In addition, cytotoxicity of doxorubicin can be enhanced by combining this drug with the cytokine interferon-γ (IFNγ). Although doxorubicin is one of the most applied cytostatics, the molecular mechanisms of its immunomodulation ability have not been investigated thoroughly. In microarray analyses of HeLa cells, a set of 19 genes related to interferon signaling was significantly over-represented among genes regulated by doxorubicin exposure, including signal transducer and activator of transcription (STAT) 1 and 2, interferon regulatory factor 9, N-myc and STAT interactor, and caspase 1. Regulation of these genes by doxorubicin was verified with real-time polymerase chain reaction and immunoblotting. An enhanced secretion of IFNγ was observed when HeLa cells were exposed to doxorubicin compared with untreated cells. IFNγ-neutralizing antibodies and inhibition of Janus tyrosine kinase (JAK)-STAT signaling [aurintricarboxylic acid (ATA), (E)-2-cyano-3-(3,4-dihydrophenyl)-N-(phenylmethyl)-2-propenamide (AG490), STAT1 small interfering RNA] significantly abolished doxorubicin-stimulated expression of interferon signaling-related genes. Furthermore, inhibition of JAK-STAT signaling significantly reduced doxorubicin-induced caspase 3 activation and desensitized HeLa cells to doxorubicin cytotoxicity. In conclusion, we demonstrate that doxorubicin induces interferon-responsive genes via IFNγ-JAK-STAT1 signaling and that this pathway is relevant for doxorubicins cytotoxicity in HeLa cells. Immunomodulation is a promising strategy in anticancer treatment, so this novel mode of action of doxorubicin may help to further improve the use of this drug among different types of anticancer treatment strategies.


Transfusion | 2015

Impact of priming on the response of neutrophils to human neutrophil alloantigen-3a antibodies.

Tom Berthold; Stefan Muschter; Nicole Schubert; Jan Wesche; Sabine Ameling; Alexander Teumer; Angelika Reil; Jürgen Bux; Tamam Bakchoul; Andreas Greinacher

Human neutrophil alloantigen‐3a (HNA‐3a) antibodies can induce transfusion‐related acute lung injury (TRALI). The severity of TRALI varies largely among the affected patients. Severe comorbidity seems to increase the susceptibility for TRALI, potentially by priming of neutrophils. Thus, the impact of neutrophil priming on HNA‐3a antibody–mediated neutrophil aggregation and CD11b surface expression was investigated.


Journal of Proteomics | 2012

OMICS-based exploration of the molecular phenotype of resident cardiac progenitor cells from adult murine heart

Rasmita Samal; Sabine Ameling; Kristin Wenzel; Vishnu M. Dhople; Uwe Völker; Stephan B. Felix; Stephanie Könemann; Elke Hammer

Resident cardiac progenitor cells have emerged as a potential source of adult stem cells for regeneration of damaged myocardium. Sca-1 cells, expressing Stem cell antigen-1 as a cell surface marker, are multipotent cells that were shown to differentiate into different cell types i.e. cardiomyocytes. Previous studies have reported that Sca-1 positive cells are able to home to the injured heart. However, the mechanism of improving cardiac function is still unclear. In the current study, we have profiled the proteome and transcriptome of Sca-1 positive cells in comparison with other endogenous heart cell types to unravel the molecular phenotype of the progenitor cells. Among the 861 proteins identified with high confidence in total, 331 non-redundant proteins were overrepresented in Sca-1 positive cells. Highly abundant candidates were mostly associated with cell growth and proliferation, cell migration and cytoskeletal organization. Transcriptional profiling disclosed significant expression of surface antigens such as CD31, CD36, CD38, CD66a, CD102, and CD202B. Growth factors like KITL, JAG2, PDGFB and VEGFC showed a higher expression in Sca-1 progenitor cells than in Sca-1 negative cells. Selective candidates were validated by Western blotting. These global findings provide a basis for the study of their capability to participate in the cardiac regeneration process.


Biochemical Pharmacology | 2015

Protective effects of endothelin receptor A and B inhibitors against doxorubicin-induced cardiomyopathy

Matthias Schwebe; Sabine Ameling; Elke Hammer; Judith V. Monzel; Karina Bonitz; Susanne Budde; Kathleen Schult; Stefan Oswald; Eberhard Scheuch; Markus Grube; Axel Poesch; Thomas Budde; Ralf Ewert; Henry W. S. Schroeder; Heyo K. Kroemer; Sandra Bien-Möller

The clinical efficiency of the highly potent antitumor agent doxorubicin is limited by cardiotoxic effects. In a murine doxorubicin cardiotoxicity model, increased endothelin-1 (ET-1) expression and cardioprotective effects of the dual ET-1 blocker bosentan were demonstrated. To date it is unclear if combined blocking of endothelin A/B receptors is necessary or whether selective inhibition of one of the ET-1 receptors is sufficient for the observed cardioprotection. Therefore, we investigated the impact of dual (bosentan) and single endothelin receptor antagonism through sitaxentan (receptor A blocker) or BQ788 (receptor B blocker) in a murine doxorubicin cardiotoxicity model (C57BL/6N). Simultaneous administration of each endothelin receptor antagonist (ERA) with doxorubicin resulted in a significantly improved hemodynamic performance in comparison to the impaired cardiac function in control mice with bosentan being most effective but closely followed by sitaxentan and also BQ788. This cardioprotection was not caused by diminished doxorubicin levels in heart since the doxorubicin content in cardiac tissue was not altered by ERAs significantly. However, whole transcript expression profiling showed partly different effects of the ERAs on doxorubicin-modulated cardiac gene expression of genes involved in signal transduction (e.g. Stat3, Pim1, Akt1, Plcb2), fibrosis (e.g. Myl4), energy production (e.g. Ant1) or oxidative stress (e.g. Aox1). Furthermore, doxorubicin-mediated gene regulations were verified in the murine cardiomyocyte model HL-1 showing partly reversed expression patterns after co-administration of the ERAs. In summary, our results demonstrate strong cardioprotective effects of blocking ET-1 receptors against the doxorubicin-related cardiomyopathy and provide evidence to potential underlying signaling pathways.


Journal of Proteomics | 2017

Endomyocardial proteomic signature corresponding to the response of patients with dilated cardiomyopathy to immunoadsorption therapy

Gourav Bhardwaj; Marcus Dörr; Praveen Kumar Sappa; Sabine Ameling; Vishnu Dhople; Leif Steil; Karin Klingel; Klaus Empen; Daniel Beug; Uwe Völker; Stephan B. Felix; Elke Hammer

Dilated cardiomyopathy (DCM) is a disease of the myocardium with reduced left ventricular ejection fraction (LVEF). Cardiac autoantibodies (AAbs) play a causal role in the development and progression of DCM. Removal of AAbs using immunoadsorption (IA/IgG) has been shown as a therapeutic option to improve cardiac function. However, the response to therapy differs significantly among patients. The reasons for this variability are not completely understood. Hitherto, no potential biomarker is available to predict improvement of cardiac function after therapy accurately. This shotgun proteome study aims to disclose the differences in the endomyocardial proteome between patients with improved LVEF after IA/IgG (responders) and those without improvement (non-responders) before therapy start. Comparative analysis revealed 54 differentially abundant proteins that were mostly confined to carbohydrate and lipid metabolism, energy and immune regulation, and cardioprotection. Selected proteins representing various functional categories were further confirmed by multiple reaction monitoring (MRM). Among those, protein S100-A8, perilipin-4, and kininogen-1 were found the most robust candidates differentiating responders and non-responders. Receiver operating characteristic curve (ROC) analysis of these proteins revealed highest potential for protein S100-A8 (AUC 0.92) with high sensitivity and specificity to be developed as a classifier for the prediction of cardiac improvement after IA/IgG therapy. SIGNIFICANCE We evaluated the differences in the myocardial proteome of responder and non-responder DCM patients before immunoadsorption therapy and identified a number of differentially abundant proteins involved in energy and lipid metabolism, immune system, and cardioprotection. MRM was used for verification of results. Proteins S100-A8, perilipin-4, and kininogen-1 were found to display the largest differences. The results provide a lead for further studies to screen for protein biomarker candidates in plasma that might be helpful to stratify patients for immunoadsorption therapy treatment.

Collaboration


Dive into the Sabine Ameling's collaboration.

Top Co-Authors

Avatar

Elke Hammer

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar

Uwe Völker

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leif Steil

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar

Marcus Dörr

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar

Markus Grube

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Klaus Empen

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge