Sabine Janisch
University of Göttingen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sabine Janisch.
Poultry Science | 2011
Sabine Janisch; Carsten Krischek; Michael Wicke
Broilers from the lines Ross 308, Ross 708, and Cobb 700 were slaughtered at 28 and 41 d of age at a commercial abattoir. After slaughter, the carcass, breast, and leg weights as well as the breast and leg yields were determined. Further investigations analyzed the color [lightness (L*), redness (a*), and yellowness (b*)], pH at 24 h postmortem, electrical conductivity (EC), drip loss, grill loss, and shear force values as well as the muscle fiber cross-sectional areas of the breast muscles. The 41-d-old broilers had higher carcass, breast, and leg weights than the 28-d-old birds. The breast yield values were higher and the leg yields were lower in the 41-d-old broilers. The fiber cross-sectional area values were also higher in the older birds. Within the younger birds the slaughter characteristics were approximately comparable among the lines. The EC, L*, grill loss, and shear force values increased but the drip loss and a* values decreased with the age of the broiler. The genetic lines differed within the 28-d-old broilers with regard to EC, grill loss, and shear force values and within the 41-d-old broilers with regard to the EC, L*, grill loss, and shear force values. The pH correlated negatively with the EC, L*, b*, drip loss, and shear force values. During storage, L* and b* values of the breast muscles increased and a* values decreased in all genetic lines, whereas the L* values were generally higher in the older broilers and the a* and b* results were generally higher in the breast muscles of the younger broilers. In conclusion, the carcass and meat quality characteristics of broilers changed with age with positive (carcass and breast muscle weight, drip loss) but also negative (L*, a*, grill loss) effects. The effect of the genetic line was rather low. Despite the age-related changes of meat quality parameter, the pH values remained unchanged, indicating muscle structural influences on the muscle-to-meat-transition with increasing age of the broiler.
Animal | 2011
Werner C; Sabine Janisch; Michael Wicke
Colour is an important quality parameter of broiler meat influencing the consumer buying behaviour. The alterations of the colour after slaughter are related to the oxidative status of the tissue. This in turn is influenced by an interaction between the mitochondria and the antioxidative enzymes. In this study, breast muscles were collected from hens and cocks of a commercial line slaughtered at the ages of 28 and 41 day. Analysis of the activities of superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GR) was performed with samples obtained 20 min and 48 h after slaughter (post mortem, p.m.), whereas the mitochondrial respiratory activity was analysed in permeabilised breast muscle fibres collected 20 min p.m. The carcass characteristics of breast muscle and leg weight as well as breast yield were significantly higher, and the leg yields lower, in the 41-day-old broiler. The 28-day-old hens and cocks had comparable carcass characteristics (P > 0.05), whereas 41-day-old cocks had significantly higher carcass, breast and leg weight in comparison to the hens. The pH20 min p.m. and the L*48 h p.m. were significantly higher, and the a* and b* values of the 20 min and 48 h p.m. samples as well as the drip loss were significantly lower in the 41-day-old broiler. Mitochondrial respiratory rates were comparable (P > 0.05) between the 28- and 41-day-old cocks and hens. The same result could be found with regard to the activities of the SOD, GPx and GR except for lower activities of the SOD20 min p.m. and higher of the GR48 h min p.m. in the 41-day-old broiler. The concentrations of thiobarbituric acid-reactive substances were generally higher in the breast muscles of the 41-day-old broiler. Assorting the data according to their mean pH20 min p.m. indicates a positive influence of higher pH values (>6.34) on the mitochondrial function, whereas a low pH20 min p.m. results in tendentially and significantly higher activities of the antioxidative enzymes and drip loss values. These results indicate a relation between the meat quality and the oxidative metabolism as well as antioxidative capacity of the meat.
Molecular Reproduction and Development | 2016
Carsten Krischek; Sabine Janisch; Watcharapong Naraballobh; Ronald M. Brunner; Klaus Wimmers; Michael Wicke
Altering incubation temperature during embryogenesis has an impact on chicken embryo growth, but the underlying molecular mechanisms are not understood; the present study was performed to address these changes. Broiler eggs were incubated at low (36.8°C), control (37.8°C), and high (38.8°C) temperatures between Embryonic Day (ED) 7 and 10 or ED 10 and 13, which cover critical periods of embryonic myogenesis. The embryos were then dissected immediately after treatment on ED 10 or 13 to assess body, liver, and heart weights as well as to analyze breast and leg muscle fibers for their mitochondrial respiratory activity (MRA). Breast muscle samples were additionally used to evaluate the activity of enzymes involved in energy metabolism and cell‐cycle progression. ED‐10 embryos incubated at 38.8°C showed elevated weights (body, liver, and heart), MRA, and activities of lactate dehydrogenase and cytochrome oxidase compared to the ED‐10 embryos incubated at 36.8°C. Similarly, the ED‐13 embryos incubated at 38.8°C showed elevated body weight, MRA, and activities of glycogen phosphorylase, phosphofructokinase, and cytochrome oxidase compared to their 36.8°C counterparts. Embryos incubated at the normal temperature (37.8°C), however, showed variable differences from those incubated at 38.8°C versus 36.8°C. Cell‐cycle enzyme activities were not impacted by the different temperature treatments. Thus, an increase or decrease in the incubation temperature during embryonic broiler myogenesis results in altered embryo activity, muscle energy metabolism, and activity‐dependent muscle growth. Mol. Reprod. Dev. 83: 71–78, 2016.
Poultry Science | 2013
Johanna Popp; Carsten Krischek; Sabine Janisch; Michael Wicke; G. Klein
It has been suggested that the color of turkey breast meat influences both physico-chemical and microbiological properties of raw fermented sausages. In this study, raw fermented sausages were produced with turkey breast meat in 3 different colors (pale, normal, or dark), which were obtained from 2 fast-growing-genetic-line toms at 2 slaughterhouses. Prior to the sausage production, the breast muscles were sorted into color groups according to the lightness values determined at 24 h postmortem. This meat was subsequently processed to raw fermented sausages using 1.5 or 2.5% curing salt (CS). The pale meat had higher lightness, electrical conductivity, and drip loss, whereas the dark meat showed a darker color only. The physico-chemical (pH, water activity), visual (lightness, redness), and microbial (total plate count) properties of the sausages were not influenced by the color of the turkey breast meat. The sausage made with 2.5% CS had lower aw and higher ash and hardness values than the sausages produced with 1.5% CS. In conclusion, processing of differently colored turkey meat to raw fermented sausages does not influence the quality characteristics of the products. Based on these findings, there is no reason for the sausage producer to separate turkey breast muscles by color before producing raw fermented sausages.
Animal | 2012
Sabine Janisch; Michael Wicke; Carsten Krischek
Meat quality and (anti)oxidative metabolism of m. pectoralis superficialis (MPS), m. gastrocnemius (MG) and m. iliotibilialis lateralis (MIL) from turkey toms were analysed. After slaughter, pH of MPS and MG decreased and electrical conductivity of the MPS increased. The MG had generally higher pH values. The meat lightness (L) and redness (a) increased in MG and MPS after slaughter. The MPS always had higher L and lower a values. Mitochondrial respiratory activities (MRA) were higher in the MIL than the MPS. The activities of superoxide dismutase (SOD) and glutathione peroxidase, analysed in the MPS, increased and the glutathione reductase activity decreased after slaughter. Meat samples with lower pH24 h p.m. had higher drip loss and L values. The MRA were tendentially lower and the SOD activities higher in these samples. These results indicate a relation between the meat quality, the antioxidative metabolism and mitochondrial respiration.
PLOS ONE | 2016
Watcharapong Naraballobh; Nares Trakooljul; Eduard Murani; Ronald M. Brunner; Carsten Krischek; Sabine Janisch; Michael Wicke; Siriluck Ponsuksili; Klaus Wimmers
Variations in egg incubation temperatures can have acute or long-term effects on gene transcription in avian species. Altered gene expression may, in turn, affect muscle traits in poultry and indirectly influence commercial production. To determine how changes in eggshell temperature affect gene expression, incubation temperatures were varied [36.8°C (low), 37.8°C (control), 38.8°C (high)] at specific time periods reflecting two stages of myogenesis [embryonic days (ED) 7–10 and 10–13]. Gene expression was compared between interventions and matching controls by microarrays in broiler breast muscle at ED10 or ED13 and post-hatch at day 35. Early (ED7-10) high incubation temperature (H10ΔC) resulted in 1370 differentially expressed genes (DEGs) in embryos. Ingenuity pathway analysis revealed temporary activation of cell maintenance, organismal development, and survival ability genes, but these effects were not maintained in adults. Late high incubation temperature (ED10-13) (H13ΔC) had slightly negative impacts on development of cellular components in embryos, but a cumulative effect was observed in adults, in which tissue development and nutrition metabolism were affected. Early low incubation temperature (L10ΔC) produced 368 DEGs, most of which were down-regulated and involved in differentiation and formation of muscle cells. In adults, this treatment down-regulated pathways of transcriptional processes, but up-regulated cell proliferation. Late low temperature incubation (L13ΔC) produced 795 DEGs in embryos, and activated organismal survival and post-transcriptional regulation pathways. In adults this treatment activated cellular and organ development, nutrition and small molecule activity, and survival rate, but deactivated size of body and muscle cells. Thermal interventions during incubation initiate immediate and delayed transcriptional responses that are specific for timing and direction of treatment. Interestingly, the transcriptional response to transiently decreased incubation temperature, which did not affect the phenotypes, prompts compensatory effects reflecting resilience. In contrast, higher incubation temperature triggers gene expression and has long-term effects on the phenotype. These mechanisms of considerable phenotypic plasticity contribute to the biodiversity and broaden the basis for managing poultry populations.
Scientific Reports | 2018
Watcharapong Naraballobh; Nares Trakooljul; Eduard Murani; Carsten Krischek; Sabine Janisch; Michael Wicke; Siriluck Ponsuksili; Klaus Wimmers
MicroRNAs are post-transcriptional regulators that play critical roles in diverse biological processes. We hypothesize that miRNAs may be involved in regulating transcriptome responses to changes in embryonic incubation temperature in chickens affecting differentiation and proliferation processes during tissue development. Therefore, we conducted comparative transcriptome profiling of miRNAs to examine altered expression in breast and hind muscle of embryos and day 35 chickens experiencing high (38.8 °C), control (37.8 °C), or low (36.8 °C) embryonic incubation temperature during embryonic day (ED) 7–10 or ED10–13. The results revealed differential expression of miRNAs due to modification of embryonic incubation temperature in a muscle type-specific and a developmental stage-specific manner. The immediate effects of thermal change observed in embryos were substantial compared to the subtle long-term effects in chickens at day 35 post-hatch. Upregulation of miR-133 in breast muscle and downregulation of miR-199a-5p, miR-1915, and miR-638 in hind muscle post ED7–10 high-temperature treatment are functionally associated with myogenesis and body size. ED10–13 low-temperature treatment led to downregulation of let-7, miR-93, and miR-130c that are related to proliferation and differentiation. The results provide insight into the dynamics of miRNA expression at variable embryonic incubation temperatures during developmental processes and indicate a major regulatory role of miRNAs in acute responses to modified environmental conditions that affect remodelling of cells and tissues.
Foods | 2018
Lisa Siekmann; Lisa Meier-Dinkel; Sabine Janisch; Brianne Altmann; Claudia Kaltwasser; Christian Sürie; Carsten Krischek
Over 40 million day-old layer line cockerels are culled in Germany each year, due to economic reasons, leading to a recently instigated research focus on the potential of dual-purpose breeds as an alternative to conventional poultry husbandry, especially the practice of culling. This paper aims to explore and assess the dual-purpose chicken breed “Lohmann Dual” (LD) performance (n = 30) and sensory characteristics (n = 48). Carcass and meat quality traits are evaluated, and descriptive sensory analysis of breast muscles is conducted. To define the scope of characteristics, a market sample of “Ross” Line (n = 35) is adducted. LD carcasses are characterized by higher leg than breast yield; carcass, breast and leg weights are higher in Ross. LD meat has a lower pH, differs in color, has higher drip and thawing losses, but lower cooking loss. LD breast muscles are firmer as indicated by shear force measurements, which is confirmed through the sensory analysis. Appearance, odor and flavor differ between the lines. Overall, distinguishable differences are found between both breeds. Further research should focus on the marketing aspect of the dual-purpose line, as some characteristics could draw consumers to this product. Animal welfare and ethical concerns should further be considered when considering dual-purpose breeds as a feasible alternative to culling.
Animal | 2017
Carsten Krischek; Klaus Wimmers; Sabine Janisch; Michael Wicke; A. R. Sharifi
Broiler eggs were either incubated at 37.8°C during the whole incubation period (control), or at higher (38.8°C, group H) and lower temperatures (36.8°C, group L) from embryonic day (ED) 7 up to ED 10 (ED 7 to 10) or from ED 10 up to ED 13 (ED 10 to 13). Before and after this temperature treatment the eggs were incubated at 37.8°C. The day-old chicks were weighted, sexed and fed up to day 35. On days 1 and 35 samples were taken from the breast and leg muscles for analyzing of the mitochondrial respiratory activity (MRA) and from the breast muscles for analysis of the cross-sectional areas (CSA) and the glycogen phosphorylase (GP), phosphofructokinase (PFK), lactate dehydrogenase (LDH), citrate synthase (CS) and cytochrome oxidase (COX) activities. Statistical analysis showed that treatment (control, group H, group L), sex and their interaction, but not the treatment period (ED 7 to 10; ED 10 to 13), significantly influenced the results. Group H chicks had lower (P⩽0.05) body and heart weights but higher (P⩽0.05) liver weights, CSA values, leg MRA as well as PFK, LDH, CS, GP and COX activities compared with the group L chicks. The results of the control chicks differ (P⩽0.05) from those of the group H (body, heart weight, COX), the group L chicks (liver weight, PFK, LDH, CS, GP) or the birds of both other groups (CSA). The group H broiler had higher (P⩽0.05) body and leg weights as well as LDH, CS, COX and GP activities than the group L broilers. The BWs and the LDH and GP results of the control broiler differ (P⩽0.05) from those of both other groups or from the results of the group H (CS) and group L broiler (COX). Female broilers had lower (P⩽0.05) body, breast and leg weights, but higher (P⩽0.05) CSA, LDH, CS and GP activities than the male animals. Analysis of treatment×sex interaction showed that group H hens had higher (P⩽0.05) body and breast weights, LDH and GP activities compared with the group L hens, whereas in the male broiler no effect of the interaction could be found, except for the lower (P⩽0.05) CSA values in the group H than group L cocks. The treatment effects are probably due to altered embryonic activity and related molecular mechanisms. The sex-related differences in the broiler indicate that these alterations already occur in the embryos and chicks, but become significant with the sexual dimorphism after hatch.
Poultry Science | 2015
Sabine Janisch; A. R. Sharifi; Michael Wicke; Carsten Krischek