Sabra L. Klein
Johns Hopkins University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sabra L. Klein.
Parasite Immunology | 2004
Sabra L. Klein
The prevalence and intensity of infections caused by protozoa, nematodes, trematodes, cestodes, and arthropods is higher in males than females. The primary thesis of this review is that immunological differences exist between the sexes that may underlie increased parasitism in males compared to females. Several field and laboratory studies link sex differences in immune function with circulating steroid hormones; thus, the roles of sex steroids, including testosterone, oestradiol, and progesterone, as well as glucocorticoids will be discussed. Not only can host hormones affect responses to infection, but parasites can both produce and alter hormone concentrations in their hosts. The extent to which changes in endocrine–immune interactions following infection are mediated by the host or the parasite will be considered. Although males are more susceptible than females to many parasites, there are parasites for which males are more resistant than females and endocrine–immune interactions may underlie this sex reversal. Finally, although immunological differences exist between the sexes, genetic and behavioural differences may explain some variability in response to infection and will be explored as alternative hypotheses for how differences between the sexes contribute to dimorphic responses to parasites.
Nature Reviews Immunology | 2016
Sabra L. Klein; Katie L. Flanagan
Males and females differ in their immunological responses to foreign and self-antigens and show distinctions in innate and adaptive immune responses. Certain immunological sex differences are present throughout life, whereas others are only apparent after puberty and before reproductive senescence, suggesting that both genes and hormones are involved. Furthermore, early environmental exposures influence the microbiome and have sex-dependent effects on immune function. Importantly, these sex-based immunological differences contribute to variations in the incidence of autoimmune diseases and malignancies, susceptibility to infectious diseases and responses to vaccines in males and females. Here, we discuss these differences and emphasize that sex is a biological variable that should be considered in immunological studies.
Lancet Infectious Diseases | 2010
Sabra L. Klein; Anne E. Jedlicka; Andrew Pekosz
The biological differences associated with the sex of an individual are a major source of variation, affecting immune responses to vaccination. Compelling clinical data illustrate that men and women differ in their innate, humoral, and cell-mediated responses to viral vaccines. Sex affects the frequency and severity of adverse effects of vaccination, including fever, pain, and inflammation. Pregnancy can also substantially alter immune responses to vaccines. Data from clinical trials and animal models of vaccine efficacy lay the groundwork for future studies aimed at identifying the biological mechanisms that underlie sex-specific responses to vaccines, including genetic and hormonal factors. An understanding and appreciation of the effect of sex and pregnancy on immune responses might change the strategies used by public health officials to start efficient vaccination programmes (optimising the timing and dose of the vaccine so that the maximum number of people are immunised), ensure sufficient levels of immune responses, minimise adverse effects, and allow for more efficient protection of populations that are high priority (eg, pregnant women and individuals with comorbid conditions).
Hormones and Behavior | 2012
Dionne P. Robinson; Sabra L. Klein
During pregnancy, it is evolutionarily advantageous for inflammatory immune responses that might lead to fetal rejection to be reduced and anti-inflammatory responses that promote transfer of maternal antibodies to the fetus to be increased. Hormones modulate the immunological shift that occurs during pregnancy. Estrogens, including estradiol and estriol, progesterone, and glucocorticoids increase over the course of pregnancy and affect transcriptional signaling of inflammatory immune responses at the maternal-fetal interface and systemically. During pregnancy, the reduced activity of natural killer cells, inflammatory macrophages, and helper T cell type 1 (Th1) cells and production of inflammatory cytokines, combined with the higher activity of regulatory T cells and production of anti-inflammatory cytokines, affects disease pathogenesis. The severity of diseases caused by inflammatory responses (e.g., multiple sclerosis) is reduced and the severity of diseases that are mitigated by inflammatory responses (e.g., influenza and malaria) is increased during pregnancy. For some infectious diseases, elevated inflammatory responses that are necessary to control and clear a pathogen have a negative consequence on the outcome of pregnancy. The bidirectional interactions between hormones and the immune system contribute to both the outcome of pregnancy and female susceptibility to disease.
Behavioural Processes | 2000
Sabra L. Klein
Males generally exhibit reduced immune responses as well as increased intensity and prevalence of infections compared to female conspecifics. Physiologically, these sex differences may reflect the immunosuppressive effects of androgens. In addition to suppressing immune function, androgens maintain several characteristics important for reproductive success. Thus, a dynamic relationship is assumed to exist among hormones, secondary sex traits, and the immune system. Ultimately, the extent to which this relationship exists may be related to the mating system. Because polygynous males generally have higher circulating testosterone concentrations and rely more heavily on testosterone-dependent traits for reproductive success than monogamous males, sex differences in immune function are hypothesised to be more pronounced among polygynous as compared to monogamous species. Additionally, if secondary sex traits are used to advertise infection status, then females should be able to use the condition of male secondary sex traits to discern the immune/infection status of males during mate selection. The purpose of this review is to survey current studies that examine both the proximate mechanisms and ultimate function of variation in immune function and susceptibility to infection and determine whether immunological variation influences mate preference and possibly reproductive success.
Physiology & Behavior | 2003
Sabra L. Klein
Paul MacLean was instrumental in establishing the brain regions that mediate the expression of social behaviors in vertebrates. Pathogens can exploit these central mechanisms to alter host social behaviors, including aggressive, reproductive, and parental behaviors. Although some behavioral changes after infection are mediated by the host (e.g., sickness behaviors), other behavioral modifications are mediated by the pathogen to facilitate transmission. The goal of this review is to provide examples of parasite-mediated changes in social behavior and to illustrate that parasites affect host behavior by infecting neurons, causing central nervous system (CNS) inflammation, and altering neurotransmitter and hormonal communication. Secondarily, a comparative approach will be used to demonstrate that the effects of parasites on social behavior are retained across several classes of vertebrates possibly because parasites affect the phylogenetically primitive structures of the limbic system and related neurochemical systems.
Journal of Pineal Research | 1995
Randy J. Nelson; Gregory E. Demas; Sabra L. Klein; Lance J. Kriegsfeld
Abstract: In addition to the well‐documented seasonal cycles of mating and birth, there are also significant seasonal cycles of illness and death among many animal populations. Challenging winter conditions (i.e., low ambient temperature and decreased food availability) can directly induce death via hypothermia, starvation, or shock. Coping with these challenges can also indirectly increase morbidity and mortality by increasing glucocorticoid secretion, which can compromise immune function. Many environmental challenges are recurrent and thus predictable; animals could enhance survival, and presumably increase fitness, if they could anticipate immunologically challenging conditions in order to cope with these seasonal threats to health. The annual cycle of changing photoperiod provides an accurate indicator of time of year and thus allows immunological adjustments prior to the deterioration of conditions. Pineal melatonin codes day length information. Short day lengths enhance several aspects of immune function in laboratory studies, and melatonin appears to mediate many of the enhanced immunological effects of photoperiod. Generally, field studies report compromised immune function during the short days of autumn and winter. The conflict between laboratory and field data is addressed with a multifactor approach. The evidence for seasonal fluctuations in lymphatic tissue size and structure, as well as immune function and disease processes, is reviewed. The role of pineal melatonin and the hormones regulated by melatonin is discussed from an evolutionary and adaptive functional perspective. Finally, the clinical significance of seasonal fluctuations in immune function is presented. Taken together, it appears that seasonal fluctuations in immune parameters, mediated by melatonin, could have profound effects on the etiology and progression of diseases in humans and nonhuman animals. An adaptive functional perspective is critical to gain insights into the interaction among melatonin, immune function, and disease processes.
Endocrinology | 2012
Sabra L. Klein
Males and females have the same immunological cells, proteins, and pathways in place to protect against the development of disease. The kinetics, magnitude, and skewing of the responses mounted against pathogens, allergens, toxins, or self-antigens, however, can differ dramatically between the sexes. Generally, females mount higher innate and adaptive immune responses than males, which can result in faster clearance of pathogens but also contributes to increased susceptibility to inflammatory and autoimmune diseases in females compared with males. Hormonal and genetic factors contribute significantly to sex differences in immune function and disease pathogenesis. In particular, the expression of X-linked genes and microRNA as well as sex steroid hormones signaling through hormone receptors in immune cells can affect responses to immunological stimuli differently in males and females. Despite data illustrating profound differences between the sexes in immune function, sex differences in the pathogenesis of disease are often overlooked in biomedical research. Establishing journal policies that require authors to report the sex of their cells, animals, and subjects will improve our understanding of the pathogenesis of diseases, with the long-term goal of personalizing treatments for immune-mediated diseases differently for males and females in an effort to protect us equally.
PLOS Pathogens | 2011
Dionne P. Robinson; Maria E. Lorenzo; William Jian; Sabra L. Klein
Studies of the 1918 H1N1 influenza pandemic, the H5N1 avian influenza outbreak, and the 2009 H1N1 pandemic illustrate that sex and pregnancy contribute to severe outcome from infection, suggesting a role for sex steroids. To test the hypothesis that the sexes respond differently to influenza, the pathogenesis of influenza A virus infection was investigated in adult male and female C57BL/6 mice. Influenza infection reduced reproductive function in females and resulted in greater body mass loss, hypothermia, and mortality in females than males. Whereas lung virus titers were similar between the sexes, females had higher induction of proinflammatory cytokines and chemokines, including TNF-α, IFN-γ, IL-6, and CCL2, in their lungs than males. Removal of the gonads in both sexes eliminated the sex difference in influenza pathogenesis. Manipulation of testosterone or dihydrotestosterone concentrations in males did not significantly impact virus pathogenesis. Conversely, females administered high doses of estradiol had a ≥10-fold lower induction of TNF-α and CCL2 in the lungs and increased rates of survival as compared with females that had either low or no estradiol. The protective effects of estradiol on proinflammatory cytokines and chemokines, morbidity, and mortality were primarily mediated by signaling through estrogen receptor α (ERα). In summary, females suffer a worse outcome from influenza A virus infection than males, which can be reversed by administration of high doses of estradiol to females and reflects differences in the induction of proinflammatory responses and not in virus load.
Journal of Immunology | 2008
Mark C. Siracusa; Michael Overstreet; Franck Housseau; Alan L. Scott; Sabra L. Klein
Estrogens increase aspects of innate immunity and contribute to sex differences in the prevalence of autoimmune diseases and in response to infection. The goal of the present study was to assess whether exposure to 17β-estradiol (E2) affects the development and function of bone marrow-derived dendritic cells and to determine whether similar changes are observed in CD11c+ splenocytes exposed to E2 in vivo. E2 facilitated the differentiation of BM precursor cells into functional CD11c+CD11b+MHC class II+ dendritic cells (DCs) with increased expression of the costimulatory molecules CD40 and CD86. Exposure of bone marrow-derived dendritic cells to E2 also enhanced production of IL-12 in response to the TLR ligands, CpG and LPS. In contrast, CD11c+ cells isolated from the spleens of female C57BL/6 mice that were intact, ovariectomized, or ovariectomized with E2 replacement exhibited no differences in the number or activity of CD11c+CD11b+MHC class II+ DCs. The presence of E2 in vivo, however, increased the number of CD11c+CD49b+NK1.1low cells and reduced numbers of CD11c+CD49b+NK1.1high cells, a surface phenotype for IFN-producing killer DCs (IKDCs). Ultrastructural analysis demonstrated that CD11c+NK1.1+ populations were comprised of cells that had the appearance of both DCs and IKDCs. CD11c+ splenocytes isolated from animals with supplemental E2 produced more IFN-γ in response to IL-12 and IL-18. These data illustrate that E2 has differential effects on the development and function of DCs and IKDCs and provide evidence that E2 may strengthen innate immunity by enhancing IFN-γ production by CD11c+ cells.