Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sabrina Epiphanio is active.

Publication


Featured researches published by Sabrina Epiphanio.


Nature Medicine | 2007

Heme oxygenase-1 and carbon monoxide suppress the pathogenesis of experimental cerebral malaria

Ana Pamplona; Ana Ferreira; József Balla; Viktória Jeney; György Balla; Sabrina Epiphanio; Ângelo Chora; Isabel Pombo Gregoire; Margarida Cunha-Rodrigues; Silvia Portugal; Miguel P. Soares; Maria M. Mota

Cerebral malaria claims more than 1 million lives per year. We report that heme oxygenase-1 (HO-1, encoded by Hmox1) prevents the development of experimental cerebral malaria (ECM). BALB/c mice infected with Plasmodium berghei ANKA upregulated HO-1 expression and activity and did not develop ECM. Deletion of Hmox1 and inhibition of HO activity increased ECM incidence to 83% and 78%, respectively. HO-1 upregulation was lower in infected C57BL/6 compared to BALB/c mice, and all infected C57BL/6 mice developed ECM (100% incidence). Pharmacological induction of HO-1 and exposure to the end-product of HO-1 activity, carbon monoxide (CO), reduced ECM incidence in C57BL/6 mice to 10% and 0%, respectively. Whereas neither HO-1 nor CO affected parasitemia, both prevented blood-brain barrier (BBB) disruption, brain microvasculature congestion and neuroinflammation, including CD8+ T-cell brain sequestration. These effects were mediated by the binding of CO to hemoglobin, preventing hemoglobin oxidation and the generation of free heme, a molecule that triggers ECM pathogenesis.


Nature Medicine | 2011

Host-mediated regulation of superinfection in malaria

Silvia Portugal; Celine Carret; Mario Recker; Andrew E. Armitage; Lígia Antunes Gonçalves; Sabrina Epiphanio; David J. Sullivan; Cindy N. Roy; Chris Newbold; Hal Drakesmith; Maria M. Mota

In regions of high rates of malaria transmission, mosquitoes repeatedly transmit liver-tropic Plasmodium sporozoites to individuals who already have blood-stage parasitemia. This manifests itself in semi-immune children (who have been exposed since birth to Plasmodium infection and as such show low levels of peripheral parasitemia but can still be infected) older than 5 years of age by concurrent carriage of different parasite genotypes at low asymptomatic parasitemias. Superinfection presents an increased risk of hyperparasitemia and death in less immune individuals but counterintuitively is not frequently observed in the young. Here we show in a mouse model that ongoing blood-stage infections, above a minimum threshold, impair the growth of subsequently inoculated sporozoites such that they become growth arrested in liver hepatocytes and fail to develop into blood-stage parasites. Inhibition of the liver-stage infection is mediated by the host iron regulatory hormone hepcidin, whose synthesis we found to be stimulated by blood-stage parasites in a density-dependent manner. We mathematically modeled this phenomenon and show how density-dependent protection against liver-stage malaria can shape the epidemiological patterns of age-related risk and the complexity of malaria infections seen in young children. The interaction between these two Plasmodium stages and host iron metabolism has relevance for the global efforts to reduce malaria transmission and for evaluation of iron supplementation programs in malaria-endemic regions.


Cell Host & Microbe | 2008

Host Scavenger Receptor SR-BI Plays a Dual Role in the Establishment of Malaria Parasite Liver Infection

Michael Hannus; Miguel Prudêncio; Cécilie Martin; Lígia Antunes Gonçalves; Silvia Portugal; Sabrina Epiphanio; Akin Akinc; Philipp Hadwiger; Kerstin Jahn-Hofmann; Ingo Röhl; Geert-Jan van Gemert; Jean-François Franetich; Adrian J. F. Luty; Robert W. Sauerwein; Dominique Mazier; Victor Koteliansky; Hans-Peter Vornlocher; Christophe J. Echeverri; Maria M. Mota

An obligatory step of malaria parasite infection is Plasmodium sporozoite invasion of host hepatocytes, and host lipoprotein clearance pathways have been linked to Plasmodium liver infection. By using RNA interference to screen lipoprotein-related host factors, we show here that the class B, type I scavenger receptor (SR-BI) is the strongest regulator of Plasmodium infection among these factors. Inhibition of SR-BI function reduced P. berghei infection in Huh7 cells, and overexpression of SR-BI led to increased infection. In vivo silencing of liver SR-BI expression in mice and inhibition of SR-BI activity in human primary hepatocytes reduced infection by P. berghei and by P. falciparum, respectively. Heterozygous SR-BI(+/-) mice displayed reduced P. berghei infection rates correlating with liver SR-BI expression levels. Additional analyses revealed that SR-BI plays a dual role in Plasmodium infection, affecting both sporozoite invasion and intracellular parasite development, and may therefore constitute a good target for malaria prophylaxis.


Cell Host & Microbe | 2008

Heme Oxygenase-1 Is an Anti-Inflammatory Host Factor that Promotes Murine Plasmodium Liver Infection

Sabrina Epiphanio; Sebastian A. Mikolajczak; Lígia Antunes Gonçalves; Ana Pamplona; Silvia Portugal; Sónia S. Albuquerque; Michael Goldberg; Sofia Rebelo; Daniel G. Anderson; Akin Akinc; Hans-Peter Vornlocher; Stefan H. I. Kappe; Miguel P. Soares; Maria M. Mota

The clinically silent Plasmodium liver stage is an obligatory step in the establishment of malaria infection and disease. We report here that expression of heme oxygenase-1 (HO-1, encoded by Hmox1) is upregulated in the liver following infection by Plasmodium berghei and Plasmodium yoelii sporozoites. HO-1 overexpression in the liver leads to a proportional increase in parasite liver load, and treatment of mice with carbon monoxide and with biliverdin, each an enzymatic product of HO-1, also increases parasite liver load. Conversely, mice lacking Hmox1 completely resolve the infection. In the absence of HO-1, the levels of inflammatory cytokines involved in the control of liver infection are increased. These findings suggest that, while stimulating inflammation, the liver stage of Plasmodium also induces HO-1 expression, which modulates the host inflammatory response, protecting the infected hepatocytes and promoting the liver stage of infection.


PLOS Pathogens | 2010

VEGF promotes malaria-associated acute lung injury in mice.

Sabrina Epiphanio; Marta G. Campos; Ana Pamplona; Daniel Carapau; Ana C. Pena; Ricardo Ataíde; Carla A. A. Monteiro; Nuno Félix; Artur Costa-Silva; Claudio R. F. Marinho; Sergio Dias; Maria M. Mota

The spectrum of the clinical presentation and severity of malaria infections is broad, ranging from uncomplicated febrile illness to severe forms of disease such as cerebral malaria (CM), acute lung injury (ALI), acute respiratory distress syndrome (ARDS), pregnancy-associated malaria (PAM) or severe anemia (SA). Rodent models that mimic human CM, PAM and SA syndromes have been established. Here, we show that DBA/2 mice infected with P. berghei ANKA constitute a new model for malaria-associated ALI. Up to 60% of the mice showed dyspnea, airway obstruction and hypoxemia and died between days 7 and 12 post-infection. The most common pathological findings were pleural effusion, pulmonary hemorrhage and edema, consistent with increased lung vessel permeability, while the blood-brain barrier was intact. Malaria-associated ALI correlated with high levels of circulating VEGF, produced de novo in the spleen, and its blockage led to protection of mice from this syndrome. In addition, either splenectomization or administration of the anti-inflammatory molecule carbon monoxide led to a significant reduction in the levels of sera VEGF and to protection from ALI. The similarities between the physiopathological lesions described here and the ones occurring in humans, as well as the demonstration that VEGF is a critical host factor in the onset of malaria-associated ALI in mice, not only offers important mechanistic insights into the processes underlying the pathology related with malaria but may also pave the way for interventional studies.


The International Journal of Biochemistry & Cell Biology | 2009

Cerebral malaria and the hemolysis/methemoglobin/heme hypothesis: Shedding new light on an old disease

Ana Pamplona; Thomas Hänscheid; Sabrina Epiphanio; Maria M. Mota; Ana M. Vigário

Malaria causes more than 1 million deaths every year with cerebral malaria (CM) being a major cause of death in Sub-Saharan African children. The nature of the malaria-associated pathogenesis is complex and multi-factorial. A unified hypothesis involving sequestration of infected red blood cells, systemic host inflammatory response and hemostasis dysfunction has been proposed to explain the genesis of CM. In this review, we discuss the role of hemolysis, methemoglobin and free heme in CM, brought to light by our recent studies in mice as well as by other studies in humans.


Journal of Zoo and Wildlife Medicine | 2009

TOXOPLASMOSIS IN GOLDEN-HEADED LION TAMARINS (LEONTOPITHECUS CHRYSOMELAS) AND EMPEROR MARMOSETS (SAGUINUS IMPERATOR) IN CAPTIVITY

Sabrina Epiphanio; Marcelo Alcindo de Barros Vaz Guimarães; Daniel L. Fedullo; Sandra Helena Ramiro Corrêa; José Luiz Catão-Dias

Abstract From 1991 to 1995, eight New World nonhuman primates of the family Callitrichidae belonging to the collection of Fundação Parque Zoológico de São Paulo died of toxoplasmosis. Of the eight affected nonhuman primates, four were Leontopithecus chrysomelas (one male, three females) and four were Saguinus imperator (two males, two females). The most commonly affected organs were the lungs, liver, and lymph nodes, with hemorrhagic and necrotic lesions. Histopathologic examination revealed protozoa that were morphologically consistent with Toxoplasma gondii. Immunohistochemical assays were strongly positive for T. gondii.


International Journal of General Medicine | 2009

Unlike the synchronous Plasmodium falciparum and P. chabaudi infection, the P. berghei and P. yoelii asynchronous infections are not affected by melatonin

Piero Bagnaresi; Eduardo Alves; Henrique Borges da Silva; Sabrina Epiphanio; Maria M. Mota; Célia R.S. Garcia

We have previously reported that Plasmodium chabaudi and P. falciparum sense the hormone melatonin and this could be responsible for the synchrony of malaria infection. In P. chabaudi and P. falciparum, melatonin induces calcium release from internal stores, and this response is abolished by U73122, a phospholipase C inhibitor, and luzindole, a melatonin-receptor competitive antagonist. Here we show that, in vitro, melatonin is not able to modulate cell cycle, nor to elicit an elevation in intracellular calcium concentration of the intraerythrocytic forms of P. berghei or P. yoelii, two rodent parasites that show an asynchrononous development in vivo. Interestingly, melatonin and its receptor do not seem to play a role during hepatic infection by P. berghei sporozoites either. These data strengthen the hypothesis that host-derived melatonin does not synchronize malaria infection caused by P. berghei and P. yoelii. Moreover, these data explain why infections by these parasites are asynchronous, contrary to what is observed in P. falciparum and P. chabaudi infections.


PLOS ONE | 2014

Outbreak of avian malaria associated to multiple species of Plasmodium in magellanic penguins undergoing rehabilitation in southern Brazil.

Ralph Eric Thijl Vanstreels; Cristiane K. M. Kolesnikovas; Sandro Sandri; Patricia Silveira; Nayara O. Belo; Francisco Carlos Ferreira Junior; Sabrina Epiphanio; Mário Steindel; Érika Martins Braga; José Luiz Catão-Dias

Avian malaria is a mosquito-borne disease caused by Plasmodium spp. Avian plasmodia are recognized conservation-threatening pathogens due to their potential to cause severe epizootics when introduced to bird populations with which they did not co-evolve. Penguins are considered particularly susceptible, as outbreaks in captive populations will often lead to high morbidity and rapid mortality. We used a multidisciplinary approach to investigate an outbreak of avian malaria in 28 Magellanic penguins (Spheniscus magellanicus) at a rehabilitation center during summer 2009 in Florianópolis, Brazil. Hemosporidian infections were identified by microscopic and molecular characterization in 64% (18/28) of the penguins, including Plasmodium (Haemamoeba) tejerai, Plasmodium (Huffia) elongatum, a Plasmodium (Haemamoeba) sp. lineage closely related to Plasmodium cathemerium, and a Haemoproteus (Parahaemoproteus) sp. lineage closely related to Haemoproteus syrnii. P. tejerai played a predominant role in the studied outbreak and was identified in 72% (13/18) of the hemosporidian-infected penguins, and in 89% (8/9) of the penguins that died, suggesting that this is a highly pathogenic parasite for penguins; a detailed description of tissue meronts and lesions is provided. Mixed infections were identified in three penguins, and involved P. elongatum and either P. tejerai or P. (Haemamoeba) sp. that were compatible with P. tejerai but could not be confirmed. In total, 32% (9/28) penguins died over the course of 16 days despite oral treatment with chloroquine followed by sulfadiazine-trimethoprim. Hemosporidian infections were considered likely to have occurred during rehabilitation, probably from mosquitoes infected while feeding on local native birds, whereas penguin-mosquito-penguin transmission may have played a role in later stages of the outbreak. Considering the seasonality of the infection, rehabilitation centers would benefit from narrowing their efforts to prevent avian malaria outbreaks to the penguins that are maintained throughout summer.


PLOS ONE | 2009

Recrudescent Plasmodium berghei from Pregnant Mice Displays Enhanced Binding to the Placenta and Induces Protection in Multigravida

Claudio R. F. Marinho; Rita Neres; Sabrina Epiphanio; Lígia Antunes Gonçalves; Manuela Catarino; Carlos Penha-Gonçalves

Pregnancy-associated malaria (PAM) is associated with placenta pathology and poor pregnancy outcome but the mechanisms that control the malaria parasite expansion in pregnancy are still poorly understood and not amenable for study in human subjects. Here, we used a set of new tools to re-visit an experimental mouse model of pregnancy-induced malaria recrudescence, BALB/c with chronic Plasmodium berghei infection. During pregnancy 60% of the pre-exposed primiparous females showed pregnancy-induced malaria recrudescence and we demonstrated that the recrudescent P. berghei show an unexpected enhancement of the adherence to placenta tissue sections with a marked specificity for CSA. Furthermore, we showed that the intensity of parasitemia in primigravida was quantitatively correlated with the degree of thickening of the placental tissue and up-regulation of inflammation-related genes such as IL10. We also confirmed that the incidence of pregnancy-induced recrudescence, the intensity of the parasitemia peak and the impact on the pregnancy outcome decreased gradually from the first to the third pregnancy. Interestingly, placenta pathology and fetal impairment were also observed at low frequency among non-recrudescent females. Together, the data raise the hypothesis that recrudescent P. berghei displays selected specificity for the placenta tissue enabling on one hand, the triggering of the pathological process underlying PAM and on the other hand, the induction of PAM protection mechanisms that are revealed in subsequent pregnancies. Thus, by exploiting P. berghei pregnancy-induced recrudescence, this experimental system offers a mouse model to study the susceptibility to PAM and the mechanisms of disease protection in multigravida.

Collaboration


Dive into the Sabrina Epiphanio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lígia Antunes Gonçalves

Instituto Gulbenkian de Ciência

View shared research outputs
Top Co-Authors

Avatar

Maria M. Mota

Instituto de Medicina Molecular

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Renato Barboza

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge