Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sabrina Rovelli is active.

Publication


Featured researches published by Sabrina Rovelli.


International Journal of Environmental Research and Public Health | 2014

Airborne Particulate Matter in School Classrooms of Northern Italy

Sabrina Rovelli; Andrea Cattaneo; Camilla P. Nuzzi; Andrea Spinazzè; Silvia Piazza; Paolo Carrer; Domenico Cavallo

Indoor size-fractioned particulate matter (PM) was measured in seven schools in Milan, to characterize their concentration levels in classrooms, compare the measured concentrations with the recommended guideline values, and provide a preliminary assessment of the efficacy of the intervention measures, based on the guidelines developed by the Italian Ministry of Healthand applied to mitigate exposure to undesirable air pollutants. Indoor sampling was performed from Monday morning to Friday afternoon in three classrooms of each school and was repeated in winter 2011–2012 and 2012–2013. Simultaneously, PM2.5 samples were also collected outdoors. Two different photometers were used to collect the PM continuous data, which were corrected a posteriori using simultaneous gravimetric PM2.5 measurements. Furthermore, the concentrations of carbon dioxide (CO2) were monitored and used to determine the Air Exchange Rates in the classrooms. The results revealed poor IAQ in the school environment. In several cases, the PM2.5 and PM10 24 h concentrations exceeded the 24 h guideline values established by the World Health Organization (WHO). In addition, the indoor CO2 levels often surpassed the CO2 ASHRAE Standard. Our findings confirmed that important indoor sources (human movements, personal clouds, cleaning activities) emitted coarse particles, markedly increasing the measured PM during school hours. In general, the mean PM2.5 indoor concentrations were lower than the average outdoor PM2.5 levels, with I/O ratios generally <1. Fine PM was less affected by indoor sources, exerting a major impact on the PM1–2.5 fraction. Over half of the indoor fine particles were estimated to originate from outdoors. To a first approximation, the intervention proposed to reduce indoor particle levels did not seem to significantly influence the indoor fine PM concentrations. Conversely, the frequent opening of doors and windows appeared to significantly contribute to the reduction of the average indoor CO2 levels.


International Journal of Environmental Research and Public Health | 2017

Miniaturized Monitors for Assessment of Exposure to Air Pollutants: A Review

Francesca Borghi; Andrea Spinazzè; Sabrina Rovelli; Davide Campagnolo; Luca Del Buono; Andrea Cattaneo; Domenico Cavallo

Air quality has a huge impact on different aspects of life quality, and for this reason, air quality monitoring is required by national and international regulations. Technical and procedural limitations of traditional fixed-site stations for monitoring or sampling of air pollutants are also well-known. Recently, a different type of miniaturized monitors has been developed. These monitors, due to their characteristics (e.g., low cost, small size, high portability) are becoming increasingly important for individual exposure assessment, especially since this kind of instrument can provide measurements at high spatial and temporal resolution, which is a notable advantage when approaching assessment of exposure to environmental contaminants. The aim of this study is indeed to provide information regarding current knowledge regarding the use of miniaturized air pollutant sensors. A systematic review was performed to identify original articles: a literature search was carried out using an appropriate query for the search of papers across three different databases, and the papers were selected using inclusion/exclusion criteria. The reviewed articles showed that miniaturized sensors are particularly versatile and could be applied in studies with different experimental designs, helping to provide a significant enhancement to exposure assessment, even though studies regarding their performance are still sparse.


Science of The Total Environment | 2018

Higher health effects of ambient particles during the warm season: The role of infiltration factors

Stefano Zauli-Sajani; Sabrina Rovelli; Arianna Trentini; Dimitri Bacco; Stefano Marchesi; Fabiana Scotto; Claudia Zigola; Paolo Lauriola; Domenico Cavallo; Vanes Poluzzi; Andrea Cattaneo; Otto Hänninen

A large number of studies have shown much higher health effects of particulate matter (PM) during the warm compared to the cold season. In this paper we present the results of an experimental study carried out in an unoccupied test apartment with the aim of understanding the reasons behind the seasonal variations of the health effects due to ambient PM2.5 exposure. Measurements included indoor and outdoor PM2.5 mass and chemical composition as well as particle size distribution of ultrafine particles. Monitoring campaigns were carried out during summer and winter following a ventilation protocol developed to replicate typical occupant behaviour according to a questionnaire-based survey. Our findings showed that seasonal variation of the relationship between ambient and indoor mass concentrations cannot entirely explain the apparent difference in PM toxicity between seasons and size distribution and chemical composition of particles were identified as other possible causes of changes in the apparent PM toxicity. A marked decrease of ultrafine particles (<100 nm) passing from outdoors to indoors was observed during winter; this resulted in higher indoor exposure to nanoparticles (<50 nm) during summer. With regards to the chemical composition, a pooled analysis showed infiltration factors of chemical species similar to that obtained for PM2.5 mass with values increasing from 0.73 during winter to 0.90 during summer and few deviations from the pooled estimates. In particular, significantly lower infiltration factors and sink effect were found for nitrates and ammonium during winter. In addition, a marked increase in the contribution of indoor and outdoor sulfates to the total mass was observed during summer.


Sensors | 2018

Precision and Accuracy of a Direct-Reading Miniaturized Monitor in PM2.5 Exposure Assessment

Francesca Borghi; Andrea Spinazzè; Davide Campagnolo; Sabrina Rovelli; Andrea Cattaneo; Domenico Cavallo

The aim of this study was to evaluate the precision, accuracy, practicality, and potential uses of a PM2.5 miniaturized monitor (MM) in exposure assessment. These monitors (AirBeam, HabitatMap) were compared with the widely used direct-reading particulate matter monitors and a gravimetric reference method for PM2.5. Instruments were tested during 20 monitoring sessions that were subdivided in two different seasons to evaluate the performance of sensors across various environmental and meteorological conditions. Measurements were performed at an urban background site in Como, Italy. To evaluate the performance of the instruments, different analyses were conducted on 8-h averaged PM2.5 concentrations for comparison between direct-reading monitors and the gravimetric method, and minute-averaged data for comparison between the direct-reading instruments. A linear regression analysis was performed to evaluate whether the two measurement methods, when compared, could be considered comparable and/or mutually predictive. Further, Bland-Altman plots were used to determine whether the methods were characterized by specific biases. Finally, the correlations between the error associated with the direct-reading instruments and the meteorological parameters acquired at the sampling point were investigated. Principal results show a moderate degree of agreement between MMs and the reference method and a bias that increased with an increase in PM2.5 concentrations.


International Journal of Hygiene and Environmental Health | 2018

Probabilistic approach for the risk assessment of nanomaterials: A case study for graphene nanoplatelets

Andrea Spinazzè; Andrea Cattaneo; Francesca Borghi; Luca Del Buono; Davide Campagnolo; Sabrina Rovelli; Domenico Cavallo

An experimental probabilistic approach for health risk assessment was applied for graphene nanoplatelets (GNPs). The hazard assessment indicated a low level of toxicity for the GNPs. The benchmark dose method, based on sub-chronic and chronic inhalation exposure studies, was used to quantify a guidance value (BMCh) for occupational inhalation exposure to GNPs, expressed as a lognormal distribution with a geometric mean ± geometric standard deviation of 0.212 ± 7.79 mg/m3 and 9.37 × 104 ± 7.6 particle/cm3. Exposure scenarios (ES) were defined based on the scientific literature for large-scale production (ES1) and manufacturing (ES2) of GNPs; a third ES, concerning in-lab handling of GNPs (ES3) was based on results of experiments performed for this study. A probability distribution function was then assumed for each ES. The risk magnitude was calculated using a risk characterization ratio (RCR), defined as the ratio of the exposure distributions and the BMCh distribution. All three ES resulted in RCR distributions ≥1 (i.e. risk present); however, none of the ES had a statistically significant level of risk at a 95% confidence interval. A sensitivity analysis indicated that ∼75% of the variation in the RCR distributions was due to uncertainties in the BMCh calculation.


Environmental Pollution | 2018

Vertical variation of PM2.5 mass and chemical composition, particle size distribution, NO2, and BTEX at a high rise building

Stefano Zauli Sajani; Stefano Marchesi; Arianna Trentini; Dimitri Bacco; Claudia Zigola; Sabrina Rovelli; Isabella Ricciardelli; Claudio Maccone; Paolo Lauriola; Domenico Cavallo; Vanes Poluzzi; Andrea Cattaneo; Roy M. Harrison

Substantial efforts have been made in recent years to investigate the horizontal variability of air pollutants at regional and urban scales and epidemiological studies have taken advantage of resulting improvements in exposure assessment. On the contrary, only a few studies have investigated the vertical variability and their results are not consistent. In this study, a field experiment has been conducted to evaluate the variation of concentrations of different particle metrics and gaseous pollutants on the basis of floor height at a high rise building. Two 15-day monitoring campaigns were conducted in the urban area of Bologna, Northern Italy, one of the most polluted areas in Europe. Measurements sites were operated simultaneously at 2, 15, 26, 44 and 65 m a.g.l. Several particulate matter metrics including PM2.5 mass and chemical composition, particle number concentration and size distribution were measured. Time integrated measurement of NO2 and BTEX were also included in the monitoring campaigns. Measurements showed relevant vertical gradients for most traffic related pollutants. A monotonic gradient of PM2.5 was found with ground-to-top differences of 4% during the warm period and 11% during the cold period. Larger gradients were found for UFP (∼30% during both seasons) with a substantial loss of particles from ground to top in the sub-50 nm size range. The largest drops in concentrations for chemical components were found for Elemental Carbon (-27%), iron (-11%) and tin (-36%) during winter. The ground-to-top decline of concentrations for NO2 and benzene during winter was equal to 74% and 35%, respectively. In conclusion, our findings emphasize the need to include vertical variations of urban air pollutants when evaluating population exposure and associated health effects, especially in relation to some traffic related pollutants and particle metrics.


Analytica Chimica Acta | 2018

Multi-element analysis of size-segregated fine and ultrafine particulate via Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry

Sabrina Rovelli; Winfried Nischkauer; Domenico Cavallo; Andreas Limbeck

In this study a novel and reliable Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) measurement protocol for the elemental characterization of size-segregated particulate was developed. Special efforts were made to improve and optimize sample pre-treatment steps and LA operating conditions to avoid some critical drawbacks encountered during analysis and to make the particulate samples suitable for an accurate and reproducible LA-ICP-MS analysis, regardless of the mass loading on each filter. For example, a new approach for dust-fixation on the sample-carrier was developed using a glycerol coverage, which allowed to overcome problematic sample losses during the ablation process. Under the optimum conditions, dust samples, blank filters and standards for calibration were analyzed by multiple rastering of defined spot areas. Quantitative analysis was accomplished with dried micro-droplets of aqueous standard solutions. Derived method detection limits varied between 0.001 and 0.1 ng m-3 and allowed even for the smallest particle fraction quantitative measurements. The accuracy of LA-ICP-MS results was verified by comparison with conventional ICP-MS analysis of selected PM samples after sample mineralization. The proposed LA treatment procedure benefits from a simple and fast sample preparation, thus overcoming the laborious pre-treatment steps required for wet chemical digestion. Moreover, the better sensitivity of the LA-ICP-MS approach provided more complete information about the mass concentration and size-distribution of the investigated elements, thus allowing to deeper investigate the composition of the most dangerous PM fractions in terms of health concern.


Environmental Pollution | 2016

Is particulate air pollution at the front door a good proxy of residential exposure

Stefano Zauli Sajani; Arianna Trentini; Sabrina Rovelli; Isabella Ricciardelli; Stefano Marchesi; Claudio Maccone; Dimitri Bacco; Silvia Ferrari; Fabiana Scotto; Claudia Zigola; Andrea Cattaneo; Domenico Cavallo; Paolo Lauriola; Vanes Poluzzi; Roy M. Harrison


Atmospheric Environment | 2017

Field comparison of instruments for exposure assessment of airborne ultrafine particles and particulate matter

Andrea Spinazzè; Giacomo Fanti; Francesca Borghi; Luca Del Buono; Davide Campagnolo; Sabrina Rovelli; Andrea Cattaneo; Domenico Cavallo


Annals of Work Exposures and Health | 2017

Accuracy Evaluation of Three Modelling Tools for Occupational Exposure Assessment

Andrea Spinazzè; Filippo Lunghini; Davide Campagnolo; Sabrina Rovelli; Monica Locatelli; Andrea Cattaneo; Domenico Cavallo

Collaboration


Dive into the Sabrina Rovelli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge