Sabrina Sacconi
University of Nice Sophia Antipolis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sabrina Sacconi.
Science | 2010
Richard J.L.F. Lemmers; Patrick J. van der Vliet; Rinse Klooster; Sabrina Sacconi; Pilar Camaño; Johannes G. Dauwerse; Lauren Snider; Kirsten R. Straasheijm; Gert Jan B. van Ommen; George W. Padberg; Daniel G. Miller; Stephen J. Tapscott; Rabi Tawil; Rune R. Frants; Silvère M. van der Maarel
Addition by Contraction Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common hereditary neuromuscular disorders in Western populations, affecting about 1 in 20,000 people. In most patients, the disorder is associated with contraction of a D4Z4 microsatellite repeat array on chromosome 4q, but this contraction can also occur in the absence of disease, so the underlying genetic mechanisms have remained elusive. Lemmers et al. (p. 1650, published online 19 August; see the Perspective by Mahadevan) now show that FSHD patients carry sequence variants that create a canonical polyadenylation signal for transcripts derived from DUX4, a homeobox gene straddling the last D4Z4 repeat unit and the adjacent sequence. Addition of poly(A) stabilizes the DUX4 transcript, which is likely to be a contributing factor in the disease. Sequence variants shared by patients with a genetically complex form of muscular dystrophy explain how the disease arises. Facioscapulohumeral muscular dystrophy (FSHD) is a common form of muscular dystrophy in adults that is foremost characterized by progressive wasting of muscles in the upper body. FSHD is associated with contraction of D4Z4 macrosatellite repeats on chromosome 4q35, but this contraction is pathogenic only in certain “permissive” chromosomal backgrounds. Here, we show that FSHD patients carry specific single-nucleotide polymorphisms in the chromosomal region distal to the last D4Z4 repeat. This FSHD-predisposing configuration creates a canonical polyadenylation signal for transcripts derived from DUX4, a double homeobox gene of unknown function that straddles the last repeat unit and the adjacent sequence. Transfection studies revealed that DUX4 transcripts are efficiently polyadenylated and are more stable when expressed from permissive chromosomes. These findings suggest that FSHD arises through a toxic gain of function attributable to the stabilized distal DUX4 transcript.
Nature Genetics | 2012
Richard J.L.F. Lemmers; Rabi Tawil; Lisa M. Petek; Judit Balog; Gregory J. Block; Gijs W.E. Santen; Amanda M. Amell; Patrick J. van der Vliet; Rowida Almomani; Kirsten R. Straasheijm; Yvonne D. Krom; Rinse Klooster; Yu-chun Sun; Johan T. den Dunnen; Quinta Helmer; Colleen M. Donlin-Smith; George W. Padberg; Baziel G.M. van Engelen; Jessica C. de Greef; Annemieke Aartsma-Rus; Rune R. Frants; Marianne de Visser; Claude Desnuelle; Sabrina Sacconi; Galina N. Filippova; Bert Bakker; Michael J. Bamshad; Stephen J. Tapscott; Daniel G. Miller; Silvère M. van der Maarel
Facioscapulohumeral dystrophy (FSHD) is characterized by chromatin relaxation of the D4Z4 macrosatellite array on chromosome 4 and expression of the D4Z4-encoded DUX4 gene in skeletal muscle. The more common form, autosomal dominant FSHD1, is caused by contraction of the D4Z4 array, whereas the genetic determinants and inheritance of D4Z4 array contraction–independent FSHD2 are unclear. Here, we show that mutations in SMCHD1 (encoding structural maintenance of chromosomes flexible hinge domain containing 1) on chromosome 18 reduce SMCHD1 protein levels and segregate with genome-wide D4Z4 CpG hypomethylation in human kindreds. FSHD2 occurs in individuals who inherited both the SMCHD1 mutation and a normal-sized D4Z4 array on a chromosome 4 haplotype permissive for DUX4 expression. Reducing SMCHD1 levels in skeletal muscle results in D4Z4 contraction–independent DUX4 expression. Our study identifies SMCHD1 as an epigenetic modifier of the D4Z4 metastable epiallele and as a causal genetic determinant of FSHD2 and possibly other human diseases subject to epigenetic regulation.
Neurology | 2005
Leonardo Salviati; Sabrina Sacconi; Luisa Murer; Graziella Zacchello; L. Franceschini; A. M. Laverda; Giuseppe Basso; Catarina M. Quinzii; Corrado Angelini; Michio Hirano; Ali Naini; Plácido Navas; Salvatore DiMauro; Giovanni Montini
Coenzyme Q10 (CoQ10) deficiency has been associated with various clinical phenotypes, including an infantile multisystem disorder. The authors report a 33-month-old boy who presented with corticosteroid-resistant nephrotic syndrome in whom progressive encephalomyopathy later developed. CoQ10 was decreased both in muscle and in fibroblasts. Oral CoQ10 improved the neurologic picture but not the renal dysfunction.
Human Mutation | 2009
Jessica C. de Greef; Richard J.L.F. Lemmers; Baziel G.M. van Engelen; Sabrina Sacconi; Shannon L. Venance; Rune R. Frants; Rabi Tawil; Silvère M. van der Maarel
Facioscapulohumeral muscular dystrophy (FSHD), caused by partial deletion of the D4Z4 macrosatellite repeat on chromosome 4q, has a complex genetic and epigenetic etiology. To develop FSHD, D4Z4 contraction needs to occur on a specific genetic background. Only contractions associated with the 4qA161 haplotype cause FSHD. In addition, contraction of the D4Z4 repeat in FSHD patients is associated with significant D4Z4 hypomethylation. To date, however, the methylation status of contracted repeats on nonpathogenic haplotypes has not been studied. We have performed a detailed methylation study of the D4Z4 repeat on chromosome 4q and on a highly homologous repeat on chromosome 10q. We show that patients with a D4Z4 deletion (FSHD1) have D4Z4‐restricted hypomethylation. Importantly, controls with a D4Z4 contraction on a nonpathogenic chromosome 4q haplotype or on chromosome 10q also demonstrate hypomethylation. In 15 FSHD families without D4Z4 contractions but with at least one 4qA161 haplotype (FSHD2), we observed D4Z4‐restricted hypomethylation on chromosomes 4q and 10q. This finding implies that a genetic defect resulting in D4Z4 hypomethylation underlies FSHD2. In conclusion, we describe two ways to develop FSHD: (1) contraction‐dependent or (2) contraction‐independent D4Z4 hypomethylation on the 4qA161 subtelomere. Hum Mutat 30:1–11, 2009.
PLOS Genetics | 2009
Alexandre Ottaviani; Sylvie Rival-Gervier; Amina Boussouar; Andrea M. Foerster; Delphine Rondier; Sabrina Sacconi; Claude Desnuelle; Eric Gilson; Frédérique Magdinier
Both genetic and epigenetic alterations contribute to Facio-Scapulo-Humeral Dystrophy (FSHD), which is linked to the shortening of the array of D4Z4 repeats at the 4q35 locus. The consequence of this rearrangement remains enigmatic, but deletion of this 3.3-kb macrosatellite element might affect the expression of the FSHD-associated gene(s) through position effect mechanisms. We investigated this hypothesis by creating a large collection of constructs carrying 1 to >11 D4Z4 repeats integrated into the human genome, either at random sites or proximal to a telomere, mimicking thereby the organization of the 4q35 locus. We show that D4Z4 acts as an insulator that interferes with enhancer–promoter communication and protects transgenes from position effect. This last property depends on both CTCF and A-type Lamins. We further demonstrate that both anti-silencing activity of D4Z4 and CTCF binding are lost upon multimerization of the repeat in cells from FSHD patients compared to control myoblasts from healthy individuals, suggesting that FSHD corresponds to a gain-of-function of CTCF at the residual D4Z4 repeats. We propose that contraction of the D4Z4 array contributes to FSHD physio-pathology by acting as a CTCF-dependent insulator in patients.
American Journal of Human Genetics | 2013
Sabrina Sacconi; Richard J.L.F. Lemmers; Judit Balog; Patrick J. van der Vliet; Pauline Lahaut; Merlijn P. van Nieuwenhuizen; Kirsten R. Straasheijm; Rashmie D. Debipersad; Marianne Vos-Versteeg; Leonardo Salviati; Alberto Casarin; Elena Pegoraro; Rabi Tawil; Egbert Bakker; Stephen J. Tapscott; Claude Desnuelle; Silvère M. van der Maarel
Facioscapulohumeral muscular dystrophy type 1 (FSHD1) is caused by contraction of the D4Z4 repeat array on chromosome 4 to a size of 1-10 units. The residual number of D4Z4 units inversely correlates with clinical severity, but significant clinical variability exists. Each unit contains a copy of the DUX4 retrogene. Repeat contractions are associated with changes in D4Z4 chromatin structure that increase the likelihood of DUX4 expression in skeletal muscle, but only when the repeat resides in a genetic background that contains a DUX4 polyadenylation signal. Mutations in the structural maintenance of chromosomes flexible hinge domain containing 1 (SMCHD1) gene, encoding a chromatin modifier of D4Z4, also result in the increased likelihood of DUX4 expression in individuals with a rare form of FSHD (FSHD2). Because SMCHD1 directly binds to D4Z4 and suppresses somatic expression of DUX4, we hypothesized that SMCHD1 may act as a genetic modifier in FSHD1. We describe three unrelated individuals with FSHD1 presenting an unusual high clinical severity based on their upper-sized FSHD1 repeat array of nine units. Each of these individuals also carries a mutation in the SMCHD1 gene. Familial carriers of the FSHD1 allele without the SMCHD1 mutation were only mildly affected, suggesting a modifier effect of the SMCHD1 mutation. Knocking down SMCHD1 in FSHD1 myotubes increased DUX4 expression, lending molecular support to a modifier role for SMCHD1 in FSHD1. We conclude that FSHD1 and FSHD2 share a common pathophysiological pathway in which the FSHD2 gene can act as modifier for disease severity in families affected by FSHD1.
Human Molecular Genetics | 2008
Sabrina Sacconi; Leonardo Salviati; Yutaka Nishigaki; Winsome F Walker; Evelyn Hernandez-Rosa; Eva Trevisson; Severine Delplace; Claude Desnuelle; Sara Shanske; Michio Hirano; Eric A. Schon; Eduardo Bonilla; Darryl C. De Vivo; Salvatore DiMauro; Mercy M. Davidson
Mutations in mitochondrial DNA (mtDNA) tRNA genes can be considered functionally recessive because they result in a clinical or biochemical phenotype only when the percentage of mutant molecules exceeds a critical threshold value, in the range of 70-90%. We report a novel mtDNA mutation that contradicts this rule, since it caused a severe multisystem disorder and respiratory chain (RC) deficiency even at low levels of heteroplasmy. We studied a 13-year-old boy with clinical, radiological and biochemical evidence of a mitochondrial disorder. We detected a novel heteroplasmic C>T mutation at nucleotide 5545 of mtDNA, which was present at unusually low levels (<25%) in affected tissues. The pathogenic threshold for the mutation in cybrids was between 4 and 8%, implying a dominant mechanism of action. The mutation affects the central base of the anticodon triplet of tRNA(Trp) and it may alter the codon specificity of the affected tRNA. These findings introduce the concept of dominance in mitochondrial genetics and pose new diagnostic challenges, because such mutations may easily escape detection. Moreover, similar mutations arising stochastically and accumulating in a minority of mtDNA molecules during the aging process may severely impair RC function in cells.
Pediatric Research | 2003
Sabrina Sacconi; Leonardo Salviati; Carolyn M. Sue; Sara Shanske; Mercy M. Davidson; Eduardo Bonilla; Ali Naini; Darryl C. De Vivo; Salvatore DiMauro
Cytochrome c oxidase (COX) deficiency has been associated with a variety of clinical conditions and can be due to mutations in nuclear or mitochondrial genes. Despite recent progress in our understanding of the molecular bases of COX deficiency, the genetic defect remains elusive in many cases. We performed mutation screening in 30 patients with biochemical evidence of isolated COX deficiency and heterogeneous clinical phenotypes. Sixteen patients had various forms of encephalomyopathy, and six of these had the neuroradiological features of Leigh syndrome. Four patients had encephalohepatopathy, six had hypertrophic cardiomyopathy, and four had other phenotypes. We studied the three mtDNA genes encoding COX subunits, the 22 mtDNA tRNA genes, and seven COX assembly genes: SCO1, SCO2, SURF1, COX10, COX11, COX15, and COX17. We report two novel pathogenic SURF1 mutations in a patient with Leigh syndrome and one novel SCO2 mutation in a patient with hypertrophic cardiomyopathy. These data show that heterogeneous clinical phenotypes are associated with COX deficiency, that mutations in mtDNA COX genes are rare, and that mutations in additional genes remain to be identified.
Human Mutation | 2008
Nicole Monnier; Isabelle Marty; Julien Fauré; Claudia Castiglioni; Claude Desnuelle; Sabrina Sacconi; Brigitte Estournet; Ana Ferreiro; Norma B. Romero; Annie Laquerrière; Leila Lazaro; Jean-Jacques Martin; Eva Morava; Annick Rossi; Anneke J. van der Kooi; Marianne de Visser; Corien Verschuuren; Joël Lunardi
Mutations of the ryanodine receptor cause dominant and recessive forms of congenital myopathies with cores. Quantitative defects of RYR1 have been reported in families presenting with recessive forms of the disease and epigenic regulation has been recently proposed to explain potential maternal monoallelic silencing of the RYR1 gene. We investigated nine families presenting with a recessive form of the disease and showing a quantitative defect of RYR1 expression. Genetic analysis allowed the identification of a mutation on both alleles of the RYR1 gene for all patients, 15 being novel variants. We evidenced for all patients an alteration of the expression of the RYR1 gene caused by amorphic mutations responsible either for mRNA or protein instability. In seven families the variant present on the second allele was a missense mutation. In the remaining two families the second variant led to a hypomorphic expression of the RYR1 gene and was associated with a severe neonatal phenotype, pointing out the minimal amount of RYR1 needed for skeletal muscle function. Noticeably, a novel additional exon 3b was characterized in the most severely affected cases. This study showed that all cases presenting with a quantitative defect of RYR1 expression in our panel of patients affected by recessive core myopathies were caused by the presence of one recessive null allele and that variability of the phenotype depended on the nature of the mutation present on the second allele. Our study also indicated that presence of a second mutation must be investigated in sporadic cases or in dominant cases presenting with a familial clinical variability. Hum Mutat 29(5), 670–678, 2008.
Journal of Medical Genetics | 2012
Leonardo Salviati; Eva Trevisson; Maria Angeles Rodriguez Hernandez; Alberto Casarin; Vanessa Pertegato; Mara Doimo; Matteo Cassina; Caterina Agosto; Maria Andrea Desbats; Geppo Sartori; Sabrina Sacconi; Luigi Memo; Orsetta Zuffardi; Rafael Artuch; Catarina M. Quinzii; Salvatore DiMauro; Michio Hirano; Carlos Santos-Ocaña; Plácido Navas
Background COQ4 encodes a protein that organises the multienzyme complex for the synthesis of coenzyme Q10 (CoQ10). A 3.9 Mb deletion of chromosome 9q34.13 was identified in a 3-year-old boy with mental retardation, encephalomyopathy and dysmorphic features. Because the deletion encompassed COQ4, the patient was screened for CoQ10 deficiency. Methods A complete molecular and biochemical characterisation of the patients fibroblasts and of a yeast model were performed. Results The study found reduced COQ4 expression (48% of controls), CoQ10 content and biosynthetic rate (44% and 43% of controls), and activities of respiratory chain complex II+III. Cells displayed a growth defect that was corrected by the addition of CoQ10 to the culture medium. Knockdown of COQ4 in HeLa cells also resulted in a reduction of CoQ10. Diploid yeast haploinsufficient for COQ4 displayed similar CoQ deficiency. Haploinsufficency of other genes involved in CoQ10 biosynthesis does not cause CoQ deficiency, underscoring the critical role of COQ4. Oral CoQ10 supplementation resulted in a significant improvement of neuromuscular symptoms, which reappeared after supplementation was temporarily discontinued. Conclusion Mutations of COQ4 should be searched for in patients with CoQ10 deficiency and encephalomyopathy; patients with genomic rearrangements involving COQ4 should be screened for CoQ10 deficiency, as they could benefit from supplementation.