Sacha B. Nelson
Brandeis University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sacha B. Nelson.
Nature | 1998
Gina G. Turrigiano; Kenneth R. Leslie; Niraj S. Desai; Lana C. Rutherford; Sacha B. Nelson
Information is stored in neural circuits through long-lasting changes in synaptic strengths,. Most studies of information storage have focused on mechanisms such as long-term potentiation and depression (LTP and LTD), in which synaptic strengths change in a synapse-specific manner,. In contrast, little attention has been paid to mechanisms that regulate the total synaptic strength of a neuron. Here we describe a new form of synaptic plasticity that increases or decreases the strength of all of a neurons synaptic inputs as a function of activity. Chronic blockade of cortical culture activity increased the amplitude of miniature excitatory postsynaptic currents (mEPSCs) without changing their kinetics. Conversely, blocking GABA (γ-aminutyric acid)-mediated inhibition initially raised firing rates, but over a 48-hour period mESPC amplitudes decreased and firing rates returned to close to control values. These changes were at least partly due to postsynaptic alterations in the response to glutamate, and apparently affected each synapse in proportion to its initial strength. Such ‘synaptic scaling’ may help to ensure that firing rates do not become saturated during developmental changes in the number and strength of synaptic inputs, as well as stabilizing synaptic strengths during Hebbian modification, and facilitating competition between synapses.
Nature Neuroscience | 2000
L. F. Abbott; Sacha B. Nelson
Synaptic plasticity provides the basis for most models of learning, memory and development in neural circuits. To generate realistic results, synapse-specific Hebbian forms of plasticity, such as long-term potentiation and depression, must be augmented by global processes that regulate overall levels of neuronal and network activity. Regulatory processes are often as important as the more intensively studied Hebbian processes in determining the consequences of synaptic plasticity for network function. Recent experimental results suggest several novel mechanisms for regulating levels of activity in conjunction with Hebbian synaptic modification. We review three of them—synaptic scaling, spike-timing dependent plasticity and synaptic redistribution—and discuss their functional implications.
PLOS Biology | 2005
Sen Song; Per Jesper Sjöström; Markus Reigl; Sacha B. Nelson; Dmitri B. Chklovskii
How different is local cortical circuitry from a random network? To answer this question, we probed synaptic connections with several hundred simultaneous quadruple whole-cell recordings from layer 5 pyramidal neurons in the rat visual cortex. Analysis of this dataset revealed several nonrandom features in synaptic connectivity. We confirmed previous reports that bidirectional connections are more common than expected in a random network. We found that several highly clustered three-neuron connectivity patterns are overrepresented, suggesting that connections tend to cluster together. We also analyzed synaptic connection strength as defined by the peak excitatory postsynaptic potential amplitude. We found that the distribution of synaptic connection strength differs significantly from the Poisson distribution and can be fitted by a lognormal distribution. Such a distribution has a heavier tail and implies that synaptic weight is concentrated among few synaptic connections. In addition, the strengths of synaptic connections sharing pre- or postsynaptic neurons are correlated, implying that strong connections are even more clustered than the weak ones. Therefore, the local cortical network structure can be viewed as a skeleton of stronger connections in a sea of weaker ones. Such a skeleton is likely to play an important role in network dynamics and should be investigated further.
Current Opinion in Neurobiology | 2000
Gina G. Turrigiano; Sacha B. Nelson
The positive-feedback nature of Hebbian plasticity can destabilize the properties of neuronal networks. Recent work has demonstrated that this destabilizing influence is counteracted by a number of homeostatic plasticity mechanisms that stabilize neuronal activity. Such mechanisms include global changes in synaptic strengths, changes in neuronal excitability, and the regulation of synapse number. These recent studies suggest that Hebbian and homeostatic plasticity often target the same molecular substrates, and have opposing effects on synaptic or neuronal properties. These advances significantly broaden our framework for understanding the effects of activity on synaptic function and neuronal excitability.
Neuron | 2003
Per Jesper Sjöström; Gina G. Turrigiano; Sacha B. Nelson
There is a consensus that NMDA receptors (NMDARs) detect coincident pre- and postsynaptic activity during induction of long-term potentiation (LTP), but their role in timing-dependent long-term depression (tLTD) is unclear. We examine tLTD in neocortical layer 5 (L5) pyramidal pairs and find that tLTD is expressed presynaptically, implying retrograde signaling. CB1 agonists produce depression that mimics and occludes tLTD. This agonist-induced LTD requires presynaptic activity and NMDAR activation, but not postsynaptic Ca(2+) influx. Further experiments demonstrate the existence of presynaptic NMDARs that underlie the presynaptic activity dependence. Finally, manipulating cannabinoid breakdown alters the temporal window for tLTD. In conclusion, tLTD requires simultaneous activation of presynaptic NMDA and CB1 receptors. This novel form of coincidence detection may explain the temporal window of tLTD and may also impart synapse specificity to cannabinoid retrograde signaling.
Nature Neuroscience | 2006
Ken Sugino; Chris M. Hempel; Mark N. Miller; Alexis M. Hattox; Peter Shapiro; Caizi Wu; Z. Josh Huang; Sacha B. Nelson
Identifying the neuronal cell types that comprise the mammalian forebrain is a central unsolved problem in neuroscience. Global gene expression profiles offer a potentially unbiased way to assess functional relationships between neurons. Here, we carried out microarray analysis of 12 populations of neurons in the adult mouse forebrain. Five of these populations were chosen from cingulate cortex and included several subtypes of GABAergic interneurons and pyramidal neurons. The remaining seven were derived from the somatosensory cortex, hippocampus, amygdala and thalamus. Using these expression profiles, we were able to construct a taxonomic tree that reflected the expected major relationships between these populations, such as the distinction between cortical interneurons and projection neurons. The taxonomic tree indicated highly heterogeneous gene expression even within a single region. This dataset should be useful for the classification of unknown neuronal subtypes, the investigation of specifically expressed genes and the genetic manipulation of specific neuronal circuit elements.
Nature Neuroscience | 2002
Niraj S. Desai; Robert H. Cudmore; Sacha B. Nelson; Gina G. Turrigiano
The mechanisms underlying experience-dependent plasticity and refinement of central circuits are not yet fully understood. A non-Hebbian form of synaptic plasticity, which scales synaptic strengths up or down to stabilize firing rates, has recently been discovered in cultured neuronal networks. Here we demonstrate the existence of a similar mechanism in the intact rodent visual cortex. The frequency of miniature excitatory postsynaptic currents (mEPSCs) in principal neurons increased steeply between post-natal days 12 and 23. There was a concomitant decrease in mEPSC amplitude, which was prevented by rearing rats in complete darkness from 12 days of age. In addition, as little as two days of monocular deprivation scaled up mEPSC amplitude in a layer- and age-dependent manner. These data indicate that mEPSC amplitudes can be globally scaled up or down as a function of development and sensory experience, and suggest that synaptic scaling may be involved in the activity-dependent refinement of cortical connectivity.
Neuron | 2006
Qiang Chang; Gargi Khare; Vardhan S. Dani; Sacha B. Nelson; Rudolf Jaenisch
Mutations in the MECP2 gene cause Rett syndrome (RTT). Bdnf is a MeCP2 target gene; however, its role in RTT pathogenesis is unknown. We examined Bdnf conditional mutant mice for RTT-relevant pathologies and observed that loss of BDNF caused smaller brain size, smaller CA2 neurons, smaller glomerulus size, and a characteristic hindlimb-clasping phenotype. BDNF protein level was reduced in Mecp2 mutant mice, and deletion of Bdnf in Mecp2 mutants caused an earlier onset of RTT-like symptoms. To assess whether this interaction was functional and potentially therapeutically relevant, we increased BDNF expression in the Mecp2 mutant brain with a conditional Bdnf transgene. BDNF overexpression extended the lifespan, rescued a locomotor defect, and reversed an electrophysiological deficit observed in Mecp2 mutants. Our results provide in vivo evidence for a functional interaction between Mecp2 and Bdnf and demonstrate the physiological significance of altered BDNF expression/signaling in RTT disease progression.
Neuron | 1998
Lana C. Rutherford; Sacha B. Nelson; Gina G. Turrigiano
Recently, we have identified a novel form of synaptic plasticity that acts to stabilize neocortical firing rates by scaling the quantal amplitude of AMPA-mediated synaptic inputs up or down as a function of neuronal activity. Here, we show that the effects of activity blockade on quantal amplitude are mediated through the neurotrophin brain-derived neurotrophic factor (BDNF). Exogenous BDNF prevented, and a TrkB-IgG fusion protein reproduced, the effects of activity blockade on pyramidal quantal amplitude. BDNF had opposite effects on pyramidal neuron and interneuron quantal amplitudes and modified the ratio of pyramidal neuron to interneuron firing rates. These data demonstrate a novel role for BDNF in the homeostatic regulation of excitatory synaptic strengths and in the maintenance of the balance of cortical excitation and inhibition.
Neuron | 2002
Sooyoung Chung; Xiangrui Li; Sacha B. Nelson
In vivo whole-cell recordings revealed that during repeated stimulation, synaptic responses to deflection of facial whiskers rapidly adapt. Extracellular recordings in the somatosensory thalamus revealed that part of the adaptation occurs subcortically, but because cortical adaptation is stronger and recovers more slowly, cortical mechanisms must also contribute. Trains of sensory stimuli that produce profound sensory adaptation did not alter intrinsic membrane properties, including resting membrane potential, input resistance, and current-evoked firing. Synaptic input evoked via intracortical stimulation was also unchanged; however, synaptic input from the somatosensory thalamus was depressed by sensory stimulation, and this depression recovered with a time course matching that of the recovery of sensory responsiveness. These data strongly suggest that synaptic depression of thalamic input to the cortex contributes to the dynamic regulation of neuronal sensitivity during rapid changes in sensory input.