Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sachi Kato.
Genome Research | 2014
Anton Kratz; Pascal Beguin; Megumi Kaneko; Takahiko Chimura; Ana Maria Suzuki; Atsuko Matsunaga; Sachi Kato; Nicolas Bertin; Timo Lassmann; Réjan Vigot; Piero Carninci; Charles Plessy; Thomas Launey
Underlying the complexity of the mammalian brain is its network of neuronal connections, but also the molecular networks of signaling pathways, protein interactions, and regulated gene expression within each individual neuron. The diversity and complexity of the spatially intermingled neurons pose a serious challenge to the identification and quantification of single neuron components. To address this challenge, we present a novel approach for the study of the ribosome-associated transcriptome-the translatome-from selected subcellular domains of specific neurons, and apply it to the Purkinje cells (PCs) in the rat cerebellum. We combined microdissection, translating ribosome affinity purification (TRAP) in nontransgenic animals, and quantitative nanoCAGE sequencing to obtain a snapshot of RNAs bound to cytoplasmic or rough endoplasmic reticulum (rER)-associated ribosomes in the PC and its dendrites. This allowed us to discover novel markers of PCs, to determine structural aspects of genes, to find hitherto uncharacterized transcripts, and to quantify biophysically relevant genes of membrane proteins controlling ion homeostasis and neuronal electrical activities.
BMC Genomics | 2013
Matthias Harbers; Sachi Kato; Michiel de Hoon; Yoshihide Hayashizaki; Piero Carninci; Charles Plessy
BackgroundAnalyzing the RNA pool or transcription start sites requires effective means to convert RNA into cDNA libraries for digital expression counting. With current high-speed sequencers, it is necessary to flank the cDNAs with specific adapters. Adding template-switching oligonucleotides to reverse transcription reactions is the most commonly used approach when working with very small quantities of RNA even from single cells.ResultsHere we compared the performance of DNA-RNA, DNA-LNA and DNA oligonucleotides in template-switching during nanoCAGE library preparation. Test libraries from rat muscle and HeLa cell RNA were prepared in technical triplicates and sequenced for comparison of the gene coverage and distribution of the reads within transcripts. The DNA-RNA oligonucleotide showed the highest specificity for capped 5′ ends of mRNA, whereas the DNA-LNA provided similar gene coverage with more reads falling within exons.ConclusionsWhile confirming the cap-specific preference of DNA-RNA oligonucleotides in template-switching reactions, our data indicate that DNA-LNA hybrid oligonucleotides could potentially find other applications in random RNA sequencing.
BioTechniques | 2016
Ophélie Arnaud; Sachi Kato; Stéphane Poulain; Charles Plessy
Transcriptome studies based on quantitative sequencing can estimate levels of gene expression by measuring target RNA abundance in sequencing libraries. Sequencing costs are proportional to the total number of sequenced reads, and in order to cover rare RNAs, considerable quantities of abundant and identical reads are needed. This major limitation can be addressed by depleting a proportion of the most abundant sequences from the library. However, such depletion strategies involve either extra handling of the input RNA sample or use of a large number of reverse transcription primers, termed not-so-random (NSR) primers, which are costly to synthesize. Taking advantage of the high tolerance of reverse transcriptase to mis-prime, we found that it is possible to use as few as 40 pseudo-random (PS) reverse transcription primers to decrease the rate of undesirable abundant sequences within a library without affecting the overall transcriptome diversity. PS primers are simple to design and can be used to deplete several undesirable RNAs simultaneously, thus creating a flexible tool for enriching transcriptome libraries for rare transcript sequences.
bioRxiv | 2018
Tsukasa Kouno; Jonathan Moody; Andrew Tae-Jun Kwon; Youtaro Shibayama; Sachi Kato; Yi Huang; Michael Böttcher; Efthymios Motakis; Mickaël Mendez; Jessica Severin; Joachim Luginbühl; Imad Abugessaisa; Akira Hasegawa; Satoshi Takizawa; Takahiro Arakawa; Masaaki Furuno; Naveen Ramalingam; Jay A.A. West; Harukazu Suzuki; Takeya Kasukawa; Timo Lassmann; Chung-Chau Hon; Erik Arner; Piero Carninci; Charles Plessy; Jay W. Shin
Single-cell transcriptomic profiling is a powerful tool to explore cellular heterogeneity. However, most of these methods focus on the 3’-end of polyadenylated transcripts and provide only a partial view of the transcriptome. We introduce C1 CAGE, a method for the detection of transcript 5’-ends with an original sample multiplexing strategy in the C1™ microfluidic system. We first quantified the performance of C1 CAGE and found it as accurate and sensitive as other methods in C1 system. We then used it to profile promoter and enhancer activities in the cellular response to TGF-β of lung cancer cells and discovered subpopulations of cells differing in their response. We also describe enhancer RNA dynamics revealing transcriptional bursts in subsets of cells with transcripts arising from either strand within a single-cell in a mutually exclusive manner, which was validated using single molecule fluorescence in-situ hybridization.
Nucleic Acids Research | 2018
Imad Abugessaisa; Shuhei Noguchi; Michael Böttcher; Akira Hasegawa; Tsukasa Kouno; Sachi Kato; Yuhki Tada; Hiroki Ura; Kuniya Abe; Jay W. Shin; Charles Plessy; Piero Carninci; Takeya Kasukawa
Abstract Published single-cell datasets are rich resources for investigators who want to address questions not originally asked by the creators of the datasets. The single-cell datasets might be obtained by different protocols and diverse analysis strategies. The main challenge in utilizing such single-cell data is how we can make the various large-scale datasets to be comparable and reusable in a different context. To challenge this issue, we developed the single-cell centric database ‘SCPortalen’ (http://single-cell.clst.riken.jp/). The current version of the database covers human and mouse single-cell transcriptomics datasets that are publicly available from the INSDC sites. The original metadata was manually curated and single-cell samples were annotated with standard ontology terms. Following that, common quality assessment procedures were conducted to check the quality of the raw sequence. Furthermore, primary data processing of the raw data followed by advanced analyses and interpretation have been performed from scratch using our pipeline. In addition to the transcriptomics data, SCPortalen provides access to single-cell image files whenever available. The target users of SCPortalen are all researchers interested in specific cell types or population heterogeneity. Through the web interface of SCPortalen users are easily able to search, explore and download the single-cell datasets of their interests.
bioRxiv | 2016
Michael Böttcher; Tsukasa Kouno; Elo Madissoon; Efthymios Motakis; Imad Abugessaisa; Sachi Kato; Harukazu Suzuki; Yoshihide Hayashizaki; Takeya Kasukawa; Piero Carninci; Timo Lassmann; Jay Shin; Charles Plessy
We used a transgenic HeLa cell line that reports cell cycle phases through fluorescent, ubiquitination-based cell cycle indicators (Fucci), to produce a reference dataset of more than 270 curated single cells. Microscopic images were taken from each cell followed by RNA-sequencing, so that single-cell expression data is associated to the fluorescence intensity of the Fucci probes in the same cell. We developed an open data management and quality control workflow that enables users to replicate the processing of the sequence and microscopic image data that we deposited in public repositories. The workflow outputs a table with metadata, that is the starting point for further studies on these data. Beyond its use for cell cycle studies, We also expect that our workflow can be adapted to other single-cell projects using a similar combination of sequencing data and fluorescence measurements.
Journal of Virology | 2016
Kübra Altinel; Kosuke Hashimoto; Yu Wei; Christine Neuveut; Ishita Gupta; Ana Maria Suzuki; Alexandre Dos Santos; Pierrick Moreau; Tian Xia; Soichi Kojima; Sachi Kato; Yasuhiro Takikawa; Isao Hidaka; Masahito Shimizu; Tomokazu Matsuura; Akihito Tsubota; Hitoshi Ikeda; Sumiko Nagoshi; Harukazu Suzuki; Marie-Louise Michel; Didier Samuel; Marie Annick Buendia; Jamila Faivre; Piero Carninci
ABSTRACT Hepatitis B virus (HBV) is a major cause of liver diseases, including hepatocellular carcinoma (HCC), and more than 650,000 people die annually due to HBV-associated liver failure. Extensive studies of individual promoters have revealed that heterogeneous RNA 5′ ends contribute to the complexity of HBV transcriptome and proteome. Here, we provide a comprehensive map of HBV transcription start sites (TSSs) in human liver, HCC, and blood, as well as several experimental replication systems, at a single-nucleotide resolution. Using CAGE (cap analysis of gene expression) analysis of 16 HCC/nontumor liver pairs, we identify 17 robust TSSs, including a novel promoter for the X gene located in the middle of the gene body, which potentially produces a shorter X protein translated from the conserved second start codon, and two minor antisense transcripts that might represent viral noncoding RNAs. Interestingly, transcription profiles were similar in HCC and nontumor livers, although quantitative analysis revealed highly variable patterns of TSS usage among clinical samples, reflecting precise regulation of HBV transcription initiation at each promoter. Unlike the variety of TSSs found in liver and HCC, the vast majority of transcripts detected in HBV-positive blood samples are pregenomic RNA, most likely generated and released from liver. Our quantitative TSS mapping using the CAGE technology will allow better understanding of HBV transcriptional responses in further studies aimed at eradicating HBV in chronic carriers. IMPORTANCE Despite the availability of a safe and effective vaccine, HBV infection remains a global health problem, and current antiviral protocols are not able to eliminate the virus in chronic carriers. Previous studies of the regulation of HBV transcription have described four major promoters and two enhancers, but little is known about their activity in human livers and HCC. We deeply sequenced the HBV RNA 5′ ends in clinical human samples and experimental models by using a new, sensitive and quantitative method termed cap analysis of gene expression (CAGE). Our data provide the first comprehensive map of global TSS distribution over the entire HBV genome in the human liver, validating already known promoters and identifying novel locations. Better knowledge of HBV transcriptional activity in the clinical setting has critical implications in the evaluation of therapeutic approaches that target HBV replication.
Archive | 2017
Stéphane Poulain; Sachi Kato; Ophélie Arnaud; Jean-Étienne Morlighem; Makoto Suzuki; Charles Plessy; Matthias Harbers
The Japanese Biochemical Society/The Molecular Biology Society of Japan | 2017
Charles Plessy; Anton Kratz; Kazunori Nagasaka; Sachi Kato; Stéphane Poulain; Ophélie Arnaud; Sofia Khan; Martin C. Frith
Archive | 2017
Stéphane Poulain; Sachi Kato; Ophélie Arnaud; Jean-Étienne Morlighem; Makoto Suzuki; Charles Plessy; Matthias Harbers