Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sachin Chavan is active.

Publication


Featured researches published by Sachin Chavan.


Journal of the American Chemical Society | 2008

Role of Exposed Metal Sites in Hydrogen Storage in MOFs

Jenny G. Vitillo; Laura Regli; Sachin Chavan; Gabriele Ricchiardi; Giuseppe Spoto; Pascal D. C. Dietzel; Silvia Bordiga; Adriano Zecchina

The role of exposed metal sites in increasing the H2 storage performances in metal-organic frameworks (MOFs) has been investigated by means of IR spectrometry. Three MOFs have been considered: MOF-5, with unexposed metal sites, and HKUST-1 and CPO-27-Ni, with exposed Cu(2+) and Ni(2+), respectively. The onset temperature of spectroscopic features associated with adsorbed H2 correlates with the adsorption enthalpy obtained by the VTIR method and with the shift experienced by the H-H stretching frequency. This relationship can be ascribed to the different nature and accessibility of the metal sites. On the basis of a pure energetic evaluation, it was observed that the best performance was shown by CPO-27-Ni that exhibits also an initial adsorption enthalpy of -13.5 kJ mol(-1), the highest yet observed for a MOF. Unfortunately, upon comparison of the hydrogen amounts stored at high pressure, the hydrogen capacities in these conditions are mostly dependent on the surface area and total pore volume of the material. This means that if control of MOF surface area can benefit the total stored amounts, only the presence of a great number of strong adsorption sites can make the (P, T) storage conditions more economically favorable. These observations lead to the prediction that efficient H2 storage by physisorption can be obtained by increasing the surface density of strong adsorption sites.


Journal of the American Chemical Society | 2011

Selective Binding of O2 over N2 in a Redox–Active Metal–Organic Framework with Open Iron(II) Coordination Sites

Eric D. Bloch; Leslie J. Murray; Wendy L. Queen; Sachin Chavan; Sergey N. Maximoff; Julian P. Bigi; Rajamani Krishna; Vanessa K. Peterson; Fernande Grandjean; Gary J. Long; Berend Smit; Silvia Bordiga; Craig M. Brown; Jeffrey R. Long

The air-free reaction between FeCl(2) and H(4)dobdc (dobdc(4-) = 2,5-dioxido-1,4-benzenedicarboxylate) in a mixture of N,N-dimethylformamide (DMF) and methanol affords Fe(2)(dobdc)·4DMF, a metal-organic framework adopting the MOF-74 (or CPO-27) structure type. The desolvated form of this material displays a Brunauer-Emmett-Teller (BET) surface area of 1360 m(2)/g and features a hexagonal array of one-dimensional channels lined with coordinatively unsaturated Fe(II) centers. Gas adsorption isotherms at 298 K indicate that Fe(2)(dobdc) binds O(2) preferentially over N(2), with an irreversible capacity of 9.3 wt %, corresponding to the adsorption of one O(2) molecule per two iron centers. Remarkably, at 211 K, O(2) uptake is fully reversible and the capacity increases to 18.2 wt %, corresponding to the adsorption of one O(2) molecule per iron center. Mössbauer and infrared spectra are consistent with partial charge transfer from iron(II) to O(2) at low temperature and complete charge transfer to form iron(III) and O(2)(2-) at room temperature. The results of Rietveld analyses of powder neutron diffraction data (4 K) confirm this interpretation, revealing O(2) bound to iron in a symmetric side-on mode with d(O-O) = 1.25(1) Å at low temperature and in a slipped side-on mode with d(O-O) = 1.6(1) Å when oxidized at room temperature. Application of ideal adsorbed solution theory in simulating breakthrough curves shows Fe(2)(dobdc) to be a promising material for the separation of O(2) from air at temperatures well above those currently employed in industrial settings.


Journal of the American Chemical Society | 2010

Highly-Selective and Reversible O2 Binding in Cr3(1,3,5-benzenetricarboxylate)2

Leslie J. Murray; Mircea Dinca; Junko Yano; Sachin Chavan; Silvia Bordiga; Craig M. Brown; Jeffrey R. Long

Reaction of Cr(CO)(6) with trimesic acid in DMF affords the metal-organic framework Cr(3)(BTC)(2).nDMF (BTC(3-) = 1,3,5-benzenetricarboxylate), which is isostructural to Cu(3)(BTC)(2).3H(2)O. Exchanging DMF for methanol and heating at 160 degrees C under dynamic vacuum for 48 h results in the desolvated framework Cr(3)(BTC)(2). Nitrogen gas adsorption measurements performed at 77 K revealed a type I isotherm, indicating BET and Langmuir surface areas of 1810 and 2040 m(2)/g, respectively. At 298 K, the O(2) adsorption isotherm for Cr(3)(BTC)(2) rises steeply to a capacity of 11 wt % at 2 mbar, while the corresponding N(2) adsorption isotherm displays very little uptake, gradually rising to a capacity of 0.58 wt % at 1 bar. Accordingly, the material displays an unprecedented O(2)/N(2) selectivity factor of 22. Deoxygenation of the sample could be accomplished by heating at 50 degrees C under vacuum for 48 h, leading to a gradually diminishing uptake capacity over the course of 15 consecutive adsorption/desorption cycles. Infrared and X-ray absorption spectra suggest formation of an O(2) adduct with partial charge transfer from the Cr(II) centers exposed on the surface of the framework. Neutron powder diffraction data confirm this mechanism of O(2) binding and indicate a lengthening of the Cr-Cr distance within the paddle-wheel units of the framework from 2.06(2) to 2.8(1) A.


Chemical Communications | 2011

Hydrogen storage properties and neutron scattering studies of Mg2(dobdc)—a metal–organic framework with open Mg2+ adsorption sites

Kenji Sumida; Craig M. Brown; Zoey R. Herm; Sachin Chavan; Silvia Bordiga; Jeffrey R. Long

The hydrogen storage properties of Mg(2)(dobdc) (dobdc(4-) = 2,5-dioxido-1,4-benzenedicarboxylate), a metal-organic framework possessing hexagonal one-dimensional channels decorated with unsaturated Mg(2+) coordination sites, have been examined through low- and high-pressure adsorption experiments, infrared spectroscopy, and neutron scattering studies.


Journal of the American Chemical Society | 2013

Impact of Metal and Anion Substitutions on the Hydrogen Storage Properties of M‑BTT Metal! Organic Frameworks

Kenji Sumida; David Stück; Lorenzo Mino; Jeng-Da Chai; Eric D. Bloch; Olena Zavorotynska; Leslie J. Murray; Mircea Dincă; Sachin Chavan; Silvia Bordiga; Martin Head-Gordon; Jeffrey R. Long

Microporous metal-organic frameworks are a class of materials being vigorously investigated for mobile hydrogen storage applications. For high-pressure storage at ambient temperatures, the M(3)[(M(4)Cl)(3)(BTT)(8)](2) (M-BTT; BTT(3-) = 1,3,5-benzenetristetrazolate) series of frameworks are of particular interest due to the high density of exposed metal cation sites on the pore surface. These sites give enhanced zero-coverage isosteric heats of adsorption (Q(st)) approaching the optimal value for ambient storage applications. However, the Q(st) parameter provides only a limited insight into the thermodynamics of the individual adsorption sites, the tuning of which is paramount for optimizing the storage performance. Here, we begin by performing variable-temperature infrared spectroscopy studies of Mn-, Fe-, and Cu-BTT, allowing the thermodynamics of H(2) adsorption to be probed experimentally. This is complemented by a detailed DFT study, in which molecular fragments representing the metal clusters within the extended solid are simulated to obtain a more thorough description of the structural and thermodynamic aspects of H(2) adsorption at the strongest binding sites. Then, the effect of substitutions at the metal cluster (metal ion and anion within the tetranuclear cluster) is discussed, showing that the configuration of this unit indeed plays an important role in determining the affinity of the framework toward H(2). Interestingly, the theoretical study has identified that the Zn-based analogs would be expected to facilitate enhanced adsorption profiles over the compounds synthesized experimentally, highlighting the importance of a combined experimental and theoretical approach to the design and synthesis of new frameworks for H(2) storage applications.


Journal of the American Chemical Society | 2014

Reversible CO Binding Enables Tunable CO/H2 and CO/N2 Separations in Metal-Organic Frameworks with Exposed Divalent Metal Cations

Eric D. Bloch; Matthew R. Hudson; Jarad A. Mason; Sachin Chavan; Valentina Crocellà; Joshua D. Howe; Kyuho Lee; Allison L. Dzubak; Wendy L. Queen; Joseph M. Zadrozny; Stephen J. Geier; Li-Chiang Lin; Laura Gagliardi; Berend Smit; Jeffrey B. Neaton; Silvia Bordiga; Craig M. Brown; Jeffrey R. Long

Six metal-organic frameworks of the M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Zn; dobdc(4-) = 2,5-dioxido-1,4-benzenedicarboxylate) structure type are demonstrated to bind carbon monoxide reversibly and at high capacity. Infrared spectra indicate that, upon coordination of CO to the divalent metal cations lining the pores within these frameworks, the C-O stretching frequency is blue-shifted, consistent with nonclassical metal-CO interactions. Structure determinations reveal M-CO distances ranging from 2.09(2) Å for M = Ni to 2.49(1) Å for M = Zn and M-C-O angles ranging from 161.2(7)° for M = Mg to 176.9(6)° for M = Fe. Electronic structure calculations employing density functional theory (DFT) resulted in good agreement with the trends apparent in the infrared spectra and crystal structures. These results represent the first crystallographically characterized magnesium and zinc carbonyl compounds and the first high-spin manganese(II), iron(II), cobalt(II), and nickel(II) carbonyl species. Adsorption isotherms indicate reversible adsorption, with capacities for the Fe, Co, and Ni frameworks approaching one CO per metal cation site at 1 bar, corresponding to loadings as high as 6.0 mmol/g and 157 cm(3)/cm(3). The six frameworks display (negative) isosteric heats of CO adsorption ranging from 52.7 to 27.2 kJ/mol along the series Ni > Co > Fe > Mg > Mn > Zn, following the Irving-Williams stability order. The reversible CO binding suggests that these frameworks may be of utility for the separation of CO from various industrial gas mixtures, including CO/H2 and CO/N2. Selectivities determined from gas adsorption isotherm data using ideal adsorbed solution theory (IAST) over a range of gas compositions at 1 bar and 298 K indicate that all six M2(dobdc) frameworks could potentially be used as solid adsorbents to replace current cryogenic distillation technologies, with the choice of M dictating adsorbent regeneration energy and the level of purity of the resulting gases.


Topics in Catalysis | 2013

In Situ Infrared Spectroscopic and Gravimetric Characterisation of the Solvent Removal and Dehydroxylation of the Metal Organic Frameworks UiO-66 and UiO-67

Greig C. Shearer; Stian Forselv; Sachin Chavan; Silvia Bordiga; Karina Mathisen; Morten Bjørgen; Stian Svelle; Karl Petter Lillerud

Herein, the desolvation, dehydroxylation and rehydroxylation of the metal organic frameworks UiO-66 and -67 are followed by in situ DRIFTS and TG–DSC. The spectra recorded on UiO-66 feature multiple bands corresponding to chemically inequivalent isolated hydroxyl groups, whereas UiO-67 has the expected single μ3-OH band from the Zr6O4(OH)4 cornerstone. Complete rehydration is demonstrated on both materials. Based on further experimental insights, hypotheses are given to explain the observed differences between UiO-66 and -67. Quantum chemical calculations are employed in order to deduce the feasibility of one possible explanation for the observed behaviour on UiO-66.


Physical Chemistry Chemical Physics | 2009

Response of CPO-27-Ni towards CO, N2 and C2H4

Sachin Chavan; Francesca Bonino; Jenny G. Vitillo; Elena Groppo; Carlo Lamberti; Pascal D. C. Dietzel; Adriano Zecchina; Silvia Bordiga

Coordinatively unsaturated Ni(2+) atoms in CPO-27-Ni form linear adducts with molecular nitrogen. The framework responds to the adsorption-modifying vibrational properties and local structure around adsorbing sites. The present paper deals with a fundamental infrared (IR) study of the interaction of gases on a microporous adsorbent metallorganic framework CPO-27-Ni containing, after solvent removal, coordinatively unsaturated Ni(2+) atoms [Dietzel et al., Chem. Commun. 2006, 959]. CO, N(2) and C(2)H(4) have been chosen. Notwithstanding the relative medium (CO and C(2)H(4)) and weak (N(2)) adsorption enthalpies and the low equilibrium pressures adopted (100-10(-3) mbar) the CPO-27-Ni framework responds promptly and reversibly to the adsorption process, modifying significantly both vibrational properties and local structure around Ni(2+) adsorbing sites as determined by a parallel EXAFS investigation locating the N(2) molecule 2.27 +/- 0.03 A apart from Ni(2+). For both N(2) and C(2)H(4), IR spectra have been discussed and carefully compared with literature data. Isosteric heat of adsorption of the Ni(2+)...N(2) complex formation has been evaluated from temperature dependent IR study to be -DeltaH(ads) = 17 kJ mol(-1).


Inorganic Chemistry | 2014

Synthesis and Characterization of Amine-Functionalized Mixed- Ligand Metal−Organic Frameworks of UiO-66 Topology

Sachin Chavan; Greig C. Shearer; Stian Svelle; Unni Olsbye; Francesca Bonino; Jayashree Ethiraj; Karl Petter Lillerud; Silvia Bordiga

A series of amine-functionalized mixed-linker metal-organic frameworks (MOFs) of idealized structural formula Zr6O4(OH)4(BDC)(6-6X)(ABDC)6X (where BDC = benzene-1,4-dicarboxylic acid, ABDC = 2-aminobenzene-1,4-dicarboxylic acid) has been prepared by solvothermal synthesis. The materials have been characterized by thermogravimetric analysis (TGA), powder X-ray diffraction (PXRD), and Fourier transform infrared (FTIR) spectroscopy with the aim of elucidating the effect that varying the degrees of amine functionalization has on the stability (thermal and chemical) and porosity of the framework. This work includes the first application of ultraviolet-visible light (UV-vis) spectroscopy in the quantification of ABDC in mixed-linker MOFs.


ChemPhysChem | 2010

Thermodynamics of Hydrogen Adsorption on Metal‐Organic Frameworks

Carlos Otero Areán; Sachin Chavan; Carlos Palomino Cabello; Edoardo Garrone; Gemma Turnes Palomino

Interaction between adsorbed hydrogen and the coordinatively unsaturated Mg(2+) and Co(2+) cationic centres in Mg-MOF-74 and Co-MOF-74, respectively, was studied by means of variable-temperature infrared (VTIR) spectroscopy. Perturbation of the H(2) molecule by the cationic adsorbing centre renders the H--H stretching mode IR-active at 4088 and 4043 cm(-1) for Mg-MOF-74 and Co-MOF-74, respectively. Simultaneous measurement of integrated IR absorbance and hydrogen equilibrium pressure for spectra taken over the temperature range of 79-95 K allowed standard adsorption enthalpy and entropy to be determined. Mg-MOF-74 showed ΔH(0)=-9.4 kJ mol(-1) and ΔS(0)=-120 J mol(-1) K(-1), whereas for Co-MOF-74 the corresponding values of ΔH(0)=-11.2 kJ mol(-1) and ΔS(0)=-130 J mol(-1) K(-1) were obtained. The observed positive correlation between standard adsorption enthalpy and entropy is discussed in the broader context of corresponding data for hydrogen adsorption on cation-exchanged zeolites, with a focus on the resulting implications for hydrogen storage and delivering.

Collaboration


Dive into the Sachin Chavan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric D. Bloch

University of California

View shared research outputs
Top Co-Authors

Avatar

Jeffrey R. Long

Lawrence Berkeley National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge