Sachiyo Tsuji-Kawahara
Kindai University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sachiyo Tsuji-Kawahara.
Journal of Virology | 2008
Eri Takeda; Sachiyo Tsuji-Kawahara; Mayumi Sakamoto; Marc-André Langlois; Michael S. Neuberger; Cristina Rada; Masaaki Miyazawa
ABSTRACT Several members of the apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like complex 3 (APOBEC3) family in primates act as potent inhibitors of retroviral replication. However, lentiviruses have evolved mechanisms to specifically evade host APOBEC3. Likewise, murine leukemia viruses (MuLV) exclude mouse APOBEC3 from the virions and cleave virion-incorporated APOBEC3. Although the betaretrovirus mouse mammary tumor virus has been shown to be susceptible to mouse APOBEC3, it is not known if APOBEC3 has a physiological role in restricting more widely distributed and long-coevolved mouse gammaretroviruses. The pathogenicity of Friend MuLV (F-MuLV) is influenced by several host genes: some directly restrict the cell entry or integration of the virus, while others influence the host immune responses. Among the latter, the Rfv3 gene has been mapped to chromosome 15 in the vicinity of the APOBEC3 locus. Here we have shown that polymorphisms at the mouse APOBEC3 locus indeed influence F-MuLV replication and pathogenesis: the APOBEC3 alleles of F-MuLV-resistant C57BL/6 and -susceptible BALB/c mice differ in their sequences and expression levels in the hematopoietic tissues and in their abilities to restrict F-MuLV replication both in vitro and in vivo. Furthermore, upon infection with the pathogenic Friend virus complex, (BALB/c × C57BL/6)F1 mice displayed an exacerbated erythroid cell proliferation when the mice carried a targeted disruption of the C57BL/6-derived APOBEC3 allele. These results indicate, for the first time, that mouse APOBEC3 is a physiologically functioning restriction factor to mouse gammaretroviruses.
Journal of Immunology | 2010
Shiki Takamura; Sachiyo Tsuji-Kawahara; Hideo Yagita; Hisaya Akiba; Mayumi Sakamoto; Tomomi Chikaishi; Maiko Kato; Masaaki Miyazawa
During chronic viral infection, persistent exposure to viral Ags leads to the overexpression of multiple inhibitory cell-surface receptors that cause CD8+ T cell exhaustion. The severity of exhaustion correlates directly with the level of infection and the number and intensity of inhibitory receptors expressed, and it correlates inversely with the ability to respond to the blockade of inhibitory pathways. Friend virus (FV) is a murine retrovirus complex that induces acute high-level viremia, followed by persistent infection and leukemia development, when inoculated into immunocompetent adult mice. In this article, we provide conclusive evidence that FV infection results in the generation of virus-specific effector CD8+ T cells that are terminally exhausted. Acute FV-induced disease is characterized by a rapid increase in the number of virus-infected erythroblasts, leading to massive splenomegaly. Most of the expanded erythroblasts strongly express programmed death ligand-1 and MHC class I, thereby creating a highly tolerogenic environment. Consequently, FV-specific effector CD8+ T cells uniformly express multiple inhibitory receptors, such as programmed cell death 1 (PD-1), T cell Ig domain and mucin domain 3 (Tim-3), lymphocyte activation gene-3, and CTLA-4, rapidly become nonresponsive to restimulation and are no longer reinvigorated by combined in vivo blockade of PD-1 and Tim-3 during the memory phase. However, combined blockade of PD-1 and Tim-3 during the priming/differentiation phase rescued FV-specific CD8+ T cells from becoming terminally exhausted, resulting in improved CD8+ T cell functionality and virus control. These results highlight FV’s unique ability to evade virus-specific CD8+ T cell responses and the importance of an early prophylactic approach for preventing terminal exhaustion of CD8+ T cells.
Vaccine | 2008
Masaaki Miyazawa; Sachiyo Tsuji-Kawahara; Yasuyoshi Kanari
Several host genes control retroviral replication and pathogenesis. These include genes that directly affect the replication of retroviruses in target cells and those that control the host immune responses to the viral antigens. Host genetic factors that affect retroviral replication and immune responses to the viral antigens have been best studied in mouse models of Friend leukemia virus (FV) infection. Several genes located within the major histocompatibility complex (MHC), along with a separate gene not linked to the MHC, influence the host immune responses to FV antigens. The latter, the Rfv3, regulates the production of virus-neutralizing antibodies, and thus affects the duration of viremia. T-cell responses to the viral epitopes are controlled by MHC class I and class II genotypes, and both CD8(+) and CD4(+) T-cells are required for spontaneous immune resistance to FV infection. When CD4(+) T-helper cells are efficiently primed with a viral epitope, however, CD8(+) T-cells are not required for immune protection against FV infection, while B cells are absolutely required. There are individuals who possess human immunodeficiency virus type 1 (HIV-1)-reactive IgA antibodies in their mucosal secretions and show strong T-cell responses to HIV-1 antigens, even though they are negative for HIV-1 genome and HIV-1-reactive serum IgG. These HIV-1-exposed but uninfected individuals rarely possess resistance-associated alleles at known AIDS-restricting loci such as CCR5Delta32. Recent genetic analyses have indicated that a large proportion of such exposed but uninfected individuals may share a common genetic background.
Journal of Virology | 2010
Sachiyo Tsuji-Kawahara; Tomomi Chikaishi; Eri Takeda; Maiko Kato; Saori Kinoshita; Eiji Kajiwara; Shiki Takamura; Masaaki Miyazawa
ABSTRACT Several host genes control retroviral replication and pathogenesis through the regulation of immune responses to viral antigens. The Rfv3 gene influences the persistence of viremia and production of virus-neutralizing antibodies in mice infected with Friend mouse retrovirus complex (FV). This locus has been mapped within a narrow segment of mouse chromosome 15 harboring the APOBEC3 and BAFF-R loci, both of which show functional polymorphisms among different strains of mice. The exon 5-lacking product of the APOBEC3 allele expressed in FV-resistant C57BL/6 (B6) mice directly restricts viral replication, and mice lacking the B6-derived APOBEC3 exhibit exaggerated pathology and reduced production of neutralizing antibodies. However, the mechanisms by which the polymorphisms at the APOBEC3 locus affect the production of neutralizing antibodies remain unclear. Here we show that the APOBEC3 genotypes do not directly affect the B-cell repertoire, and mice lacking B6-derived APOBEC3 still produce FV-neutralizing antibodies in the presence of primed T helper cells. Instead, higher viral loads at a very early stage of FV infection caused by either a lack of the B6-derived APOBEC3 or a lack of the wild-type BAFF-R resulted in slower production of neutralizing antibodies. Indeed, B cells were hyperactivated soon after infection in the APOBEC3- or BAFF-R-deficient mice. In contrast to mice deficient in the B6-derived APOBEC3, which cleared viremia by 4 weeks after FV infection, mice lacking the functional BAFF-R allele exhibited sustained viremia, indicating that the polymorphisms at the BAFF-R locus may better explain the Rfv3-defining phenotype of persistent viremia.
Journal of Virology | 2011
Tatsuya Ogawa; Sachiyo Tsuji-Kawahara; Takae Yuasa; Saori Kinoshita; Tomomi Chikaishi; Shiki Takamura; Haruo Matsumura; Tsukasa Seya; Toshihiko Saga; Masaaki Miyazawa
ABSTRACT Natural killer (NK) cells function as early effector cells in the innate immune defense against viral infections and also participate in the regulation of normal and malignant hematopoiesis. NK cell activities have been associated with early clearance of viremia in experimental simian immunodeficiency virus and clinical human immunodeficiency virus type 1 (HIV-1) infections. We have previously shown that NK cells function as major cytotoxic effector cells in vaccine-induced immune protection against Friend virus (FV)-induced leukemia, and NK cell depletion totally abrogates the above protective immunity. However, how NK cells recognize retrovirus-infected cells remains largely unclear. The present study demonstrates a correlation between the expression of the products of retinoic acid early transcript-1 (RAE-1) genes in target cells and their susceptibility to killing by NK cells isolated from FV-infected animals. This killing was abrogated by antibodies blocking the NKG2D receptor in vitro. Further, the expression of RAE-1 proteins on erythroblast surfaces increased early after FV inoculation, and administration of an RAE-1-blocking antibody resulted in increased spleen infectious centers and exaggerated pathology, indicating that FV-infected erythroid cells are recognized by NK cells mainly through the NKG2D–RAE-1 interactions in vivo. Enhanced retroviral replication due to host gene-targeting resulted in markedly increased RAE-1 expression in the absence of massive erythroid cell proliferation, indicating a direct role of retroviral replication in RAE-1 upregulation.
Journal of Virology | 2004
Daisuke Sugahara; Sachiyo Tsuji-Kawahara; Masaaki Miyazawa
ABSTRACT Recent studies have demonstrated an essential role of Gag-specific CD4+ T-cell responses for viral control in individuals infected with human immunodeficiency virus type 1. However, little is known about epitope specificities and functional roles of the Gag-specific helper T-cell responses in terms of vaccine-induced protection against a pathogenic retroviral challenge. We have previously demonstrated that immunization with Friend murine leukemia virus (F-MuLV) Gag proteins protects mice against the fatal Friend retrovirus (FV) infection. We report here the structure of a protective T helper cell (Th) epitope, (I)VTWEAIAVDPPP, identified in the p15 (MA) region of F-MuLV Gag. In mice immunized with the Th epitope-harboring peptide or a vaccinia virus-expressed native full-length MA protein, FV-induced early splenomegaly regressed rapidly. In these mice, FV-infected cells were eliminated within 4 weeks and the production of virus-neutralizing antibodies was induced rapidly after FV challenge, resulting in strong protection against the virus infection. Interestingly, mice immunized with the whole MA mounted strong CD4+ T-cell responses to the identified Th epitope, whereas mice immunized with mutant MA proteins that were not bound to the plasma membrane failed to mount efficient CD4+ T-cell responses, despite the presence of the Th epitope. These mutant MA proteins also failed to induce strong protection against FV challenge. These data indicate the importance of the properly processible MA molecule for CD4+ T-cell priming and for the resultant induction of an effective immune response against retrovirus infections.
PLOS ONE | 2011
Naoto Hayasaka; Kazuyuki Aoki; Saori Kinoshita; Shoutaroh Yamaguchi; John Wakefield; Sachiyo Tsuji-Kawahara; Kazumasa Horikawa; Hiroshi Ikegami; Shigeharu Wakana; Takamichi Murakami; Ram Ramabhadran; Masaaki Miyazawa; Shigenobu Shibata
Regulators of G protein signaling (RGS) are a multi-functional protein family, which functions in part as GTPase-activating proteins (GAPs) of G protein α-subunits to terminate G protein signaling. Previous studies have demonstrated that the Rgs16 transcripts exhibit robust circadian rhythms both in the suprachiasmatic nucleus (SCN), the master circadian light-entrainable oscillator (LEO) of the hypothalamus, and in the liver. To investigate the role of RGS16 in the circadian clock in vivo, we generated two independent transgenic mouse lines using lentiviral vectors expressing short hairpin RNA (shRNA) targeting the Rgs16 mRNA. The knockdown mice demonstrated significantly shorter free-running period of locomotor activity rhythms and reduced total activity as compared to the wild-type siblings. In addition, when feeding was restricted during the daytime, food-entrainable oscillator (FEO)-driven elevated food-anticipatory activity (FAA) observed prior to the scheduled feeding time was significantly attenuated in the knockdown mice. Whereas the restricted feeding phase-advanced the rhythmic expression of the Per2 clock gene in liver and thalamus in the wild-type animals, the above phase shift was not observed in the knockdown mice. This is the first in vivo demonstration that a common regulator of G protein signaling is involved in the two separate, but interactive circadian timing systems, LEO and FEO. The present study also suggests that liver and/or thalamus regulate the food-entrained circadian behavior through G protein-mediated signal transduction pathway(s).
Journal of Immunology | 2006
Mizuho Kajikawa; Tomohisa Baba; Utano Tomaru; Yutaka Watanabe; Satoru Koganei; Sachiyo Tsuji-Kawahara; Naoki Matsumoto; Kazuo Yamamoto; Masaaki Miyazawa; Katsumi Maenaka; Akihiro Ishizu; Masanori Kasahara
MILL (MHC class I-like located near the leukocyte receptor complex) is a family of MHC class I-like molecules encoded outside the MHC, which displays the highest sequence similarity to human MICA/B molecules among known class I molecules. In the present study, we show that the two members of the mouse MILL family, MILL1 and MILL2, are GPI-anchored glycoproteins associated with β2-microglobulin (β2m) and that cell surface expression of MILL1 or MILL2 does not require functional TAP molecules. MILL1 and MILL2 molecules expressed in bacteria could be refolded in the presence of β2m, without adding any peptides. Hence, neither MILL1 nor MILL2 is likely to be involved in the presentation of peptides. Immunohistochemical analysis revealed that MILL1 is expressed in a subpopulation of thymic medullary epithelial cells and a restricted region of inner root sheaths in hair follicles. The present study provides additional evidence that MILL is a class I family distinct from MICA/B.
Journal of Virology | 2013
Sachiyo Tsuji-Kawahara; Hiroyuki Kawabata; Hideaki Matsukuma; Saori Kinoshita; Tomomi Chikaishi; Mayumi Sakamoto; Yuri Kawasaki; Masaaki Miyazawa
ABSTRACT To assess the possible contribution of host immune responses to the exertion of Fv2-associated resistance to Friend virus (FV)-induced disease development, we inoculated C57BL/6 (B6) mice that lacked various subsets of lymphocytes with FV containing no lactate dehydrogenase-elevating virus. Fv2 r B6 mice lacking CD4+ T cells developed early polycythemia and fatal erythroleukemia, while B6 mice lacking CD8+ T cells remained resistant. Erythroid progenitor cells infected with spleen focus-forming virus (SFFV) were eliminated, and no polycythemia was observed in B cell-deficient B6 mice, but they later developed myeloid leukemia associated with oligoclonal integration of ecotropic Friend murine leukemia virus. Additional depletion of natural killer and/or CD8+ T cells from B cell-deficient B6 mice resulted in the expansion of SFFV proviruses and the development of polycythemia, indicating that SFFV-infected erythroid cells are not only restricted in their growth but are actively eliminated in Fv2 r mice through cellular immune responses.
Journal of Virology | 2015
Maiko Kato; Sachiyo Tsuji-Kawahara; Yuri Kawasaki; Saori Kinoshita; Tomomi Chikaishi; Shiki Takamura; Makoto Fujisawa; Akira Kawada; Masaaki Miyazawa
ABSTRACT Toll-like receptor 7 and Myd88 are required for antiretroviral antibody and germinal center responses, but whether somatic hypermutation and class-switch recombination are required for antiretroviral immunity has not been examined. Mice deficient in activation-induced cytidine deaminase (AID) resisted Friend virus infection, produced virus-neutralizing antibodies, and controlled viremia. Passive transfer demonstrated that immune IgM from AID-deficient mice contributes to Friend virus control in the presence of virus-specific CD4+ T cells.