Sadie L. Marjani
Central Connecticut State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sadie L. Marjani.
Genome Research | 2010
Vincent M. Bruno; Zhong Wang; Sadie L. Marjani; Ghia Euskirchen; Jeffrey Martin; Gavin Sherlock; Michael Snyder
Candida albicans is the major invasive fungal pathogen of humans, causing diseases ranging from superficial mucosal infections to disseminated, systemic infections that are often lifethreatening. We have used massively parallel high-throughput sequencing of cDNA (RNA-seq) to generate a high-resolution map of the C. albicans transcriptome under several different environmental conditions. We have quantitatively determined all of the regions that are transcribed under these different conditions, and have identified 602 novel transcriptionally active regions (TARs) and numerous novel introns that are not represented in the current genome annotation. Interestingly, the expression of many of these TARs is regulated in a condition-specific manner. This comprehensive transcriptome analysis significantly enhances the current genome annotation of C. albicans, a necessary framework for a complete understanding of the molecular mechanisms of pathogenesis for this important eukaryotic pathogen.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Xinghua Pan; Russell Durrett; Haiying Zhu; Yoshiaki Tanaka; Yumei Li; Xiaoyuan Zi; Sadie L. Marjani; Ghia Euskirchen; Chao Ma; Robert H. LaMotte; In-Hyun Park; Michael Snyder; Christopher E. Mason; Sherman M. Weissman
The ability to determine the gene expression pattern in low quantities of cells or single cells is important for resolving a variety of problems in many biological disciplines. A robust description of the expression signature of a single cell requires determination of the full-length sequence of the expressed mRNAs in the cell, yet existing methods have either 3′ biased or variable transcript representation. Here, we report our protocols for the amplification and high-throughput sequencing of very small amounts of RNA for sequencing using procedures of either semirandom primed PCR or phi29 DNA polymerase-based DNA amplification, for the cDNA generated with oligo-dT and/or random oligonucleotide primers. Unlike existing methods, these protocols produce relatively uniformly distributed sequences covering the full length of almost all transcripts independent of their sizes, from 1,000 to 10 cells, and even with single cells. Both protocols produced satisfactory detection/coverage of the abundant mRNAs from a single K562 erythroleukemic cell or a single dorsal root ganglion neuron. The phi29-based method produces long products with less noise, uses an isothermal reaction, and is simple to practice. The semirandom primed PCR procedure is more sensitive and reproducible at low transcript levels or with low quantities of cells. These methods provide tools for mRNA sequencing or RNA sequencing when only low quantities of cells, a single cell, or even degraded RNA are available for profiling.
Cancer Research | 2016
Xiaoyan Zhang; Sadie L. Marjani; Zhaoyang Hu; Sherman M. Weissman; Xinghua Pan; Shixiu Wu
Advances in genomic technology have enabled the faithful detection and measurement of mutations and the gene expression profile of cancer cells at the single-cell level. Recently, several single-cell sequencing methods have been developed that permit the comprehensive and precise analysis of the cancer-cell genome, transcriptome, and epigenome. The use of these methods to analyze cancer cells has led to a series of unanticipated discoveries, such as the high heterogeneity and stochastic changes in cancer-cell populations, the new driver mutations and the complicated clonal evolution mechanisms, and the novel identification of biomarkers of variant tumors. These methods and the knowledge gained from their utilization could potentially improve the early detection and monitoring of rare cancer cells, such as circulating tumor cells and disseminated tumor cells, and promote the development of personalized and highly precise cancer therapy. Here, we discuss the current methods for single cancer-cell sequencing, with a strong focus on those practically used or potentially valuable in cancer research, including single-cell isolation, whole genome and transcriptome amplification, epigenome profiling, multi-dimensional sequencing, and next-generation sequencing and analysis. We also examine the current applications, challenges, and prospects of single cancer-cell sequencing.
Cellular Reprogramming | 2010
Joonghoon Park; Sadie L. Marjani; Liangxue Lai; Melissa Samuel; David Wax; Steven R. Davis; Richard S. Bruno; Randall S. Prather; Xiangzhong Yang; Xiuchun Cindy Tian
Limited studies have been published analyzing the gene expression patterns of cloned pigs. We compared the expression profiles of brain, kidney, and lung tissues, representing each of the three germ layers, of deceased neonatal cloned pigs with those of age-matched controls using a 13K oligonucleotide microarray. We found 42 (0.7% of total genes analyzed), 178 (2.9%), and 121 (1.9%) genes differentially expressed in the brain, kidney, and lung of clones, respectively, when compared with the corresponding organs from controls (fold change >1.5, p < 0.05, false discovery rate (FDR) = 0.05). These expression aberrations could potentially cause the following pathological anomalies in clones: diabetic nephropathy in the kidney and dysregulated surfactant homeostasis in the lung. Interestingly, upregulated expression of genes belonging to the MAPK pathway was observed in all three organs. To investigate whether the differences in levels of gene expression were caused by differential DNA methylation, the global DNA methylation level was measured by high-performance liquid chromatography. In controls, global concentration of methylated cytosine was 5.35%, whereas clones had significantly hypomethylated genomic DNA (4.57%). Bisulfite-pyrosequencing analyses of the promoter regions of differentially expressed candidate genes, c-MYC, Period 1 (PER1), Cathepsin L (CTSL), and Follistatin (FS), however, did not show any differences in the degree of DNA methylation between controls and clones. Our findings demonstrate that deceased neonatal cloned pigs have considerable gene expression abnormalities, which may have contributed to the death of the animals.
Scientific Reports | 2016
Zongliang Jiang; Hong Dong; Xinbao Zheng; Sadie L. Marjani; David M. Donovan; Jingbo Chen; X.C. Tian
Twenty-six imprinted genes were quantified in bovine in vivo produced oocytes and embryos using RNA-seq. Eighteen were detectable and their transcriptional patterns were: largely decreased (MEST and PLAGL1); first decreased and then increased (CDKN1C and IGF2R); peaked at a specific stage (PHLDA2, SGCE, PEG10, PEG3, GNAS, MEG3, DGAT1, ASCL2, NNAT, and NAP1L5); or constantly low (DIRAS3, IGF2, H19 and RTL1). These patterns reflect mRNAs that are primarily degraded, important at a specific stage, or only required at low quantities. The mRNAs for several genes were surprisingly abundant. For instance, transcripts for the maternally imprinted MEST and PLAGL1, were high in oocytes and could only be expressed from the maternal allele suggesting that their genomic imprints were not yet established/recognized. Although the mRNAs detected here were likely biallelically transcribed before the establishment of imprinted expression, the levels of mRNA during these critical stages of development have important functional consequences. Lastly, we compared these genes to their counterparts in mice, humans and pigs. Apart from previously known differences in the imprinting status, the mRNA levels were different among these four species. The data presented here provide a solid reference for expression profiles of imprinted genes in embryos produced using assisted reproductive biotechnologies.
Scientific Reports | 2016
Zongliang Jiang; Patrick Harrington; Ming Zhang; Sadie L. Marjani; Joonghoon Park; Lynn Kuo; Csaba Pribenszky; X.C. Tian
High hydrostatic pressure (HHP) has been used to pre-condition embryos before essential, yet potentially detrimental procedures such as cryopreservation. However, the mechanisms for HHP are poorly understood. We treated bovine blastocysts with three different HHP (40, 60 and 80 MPa) in combination with three recovery periods (0, 1 h, 2 h post HHP). Re-expansion rates were significantly higher at 40 and 60 but lower at 80 MPa after vitrification-warming in the treated groups than controls. Microarray analysis revealed 399 differentially expressed transcripts, representing 254 unique genes, among different groups. Gene ontology analysis indicated that HHP at 40 and 60 MPa promoted embryo competence through down-regulation of genes in cell death and apoptosis, and up-regulation of genes in RNA processing, cellular growth and proliferation. In contrast, 80 MPa up-regulated genes in apoptosis, and down-regulated protein folding and cell cycle-related genes. Moreover, gene expression was also influenced by the length of the recovery time after HHP. The significantly over-represented categories were apoptosis and cell death in the 1 h group, and protein folding, response to unfolded protein and cell cycle in the 2 h group compared to 0 h. Taken together, HHP promotes competence of vitrified bovine blastocysts through modest transcriptional changes.
Reproduction, Fertility and Development | 2009
Sadie L. Marjani; Daniel Le Bourhis; Xavier Vignon; Y. Heyman; Robin E. Everts; Sandra L. Rodriguez-Zas; Harris A. Lewin; Jean Paul Renard; Xiangzhong Yang; X. Cindy Tian
Microarray technology enables the interrogation of thousands of genes at one time and therefore a systems level of analysis. Recent advances in the amplification of RNA, genome sequencing and annotation, and the lower cost of developing microarrays or purchasing them commercially, have facilitated the analysis of single preimplantation embryos. The present review discusses the components of embryonic expression profiling and examines current research that has used microarrays to study the effects of in vitro production and nuclear transfer.
Nucleic Acids Research | 2017
Lin Han; Hua-Jun Wu; Haiying Zhu; Kun-Yong Kim; Sadie L. Marjani; Markus Riester; Ghia Euskirchen; Xiaoyuan Zi; Jennifer Yang; Jasper Han; Michael Snyder; In-Hyun Park; Rafael A. Irizarry; Sherman M. Weissman; Franziska Michor; Rong Fan; Xinghua Pan
Abstract Conventional DNA bisulfite sequencing has been extended to single cell level, but the coverage consistency is insufficient for parallel comparison. Here we report a novel method for genome-wide CpG island (CGI) methylation sequencing for single cells (scCGI-seq), combining methylation-sensitive restriction enzyme digestion and multiple displacement amplification for selective detection of methylated CGIs. We applied this method to analyzing single cells from two types of hematopoietic cells, K562 and GM12878 and small populations of fibroblasts and induced pluripotent stem cells. The method detected 21 798 CGIs (76% of all CGIs) per cell, and the number of CGIs consistently detected from all 16 profiled single cells was 20 864 (72.7%), with 12 961 promoters covered. This coverage represents a substantial improvement over results obtained using single cell reduced representation bisulfite sequencing, with a 66-fold increase in the fraction of consistently profiled CGIs across individual cells. Single cells of the same type were more similar to each other than to other types, but also displayed epigenetic heterogeneity. The method was further validated by comparing the CpG methylation pattern, methylation profile of CGIs/promoters and repeat regions and 41 classes of known regulatory markers to the ENCODE data. Although not every minor methylation differences between cells are detectable, scCGI-seq provides a solid tool for unsupervised stratification of a heterogeneous cell population.
Hereditas (beijing) | 2011
Xinghua Pan; Haiying Zhu; Sadie L. Marjani
The technological progress of the genomics has transformed life science research. The main objectives of genomics are sequencing of new genomes and genome-wide identification of the function and the interaction of genes and their products. The recently developed second generation or next generation sequencing platforms and DNA microarray technology are immensely important and powerful tools for functional genomic analyses. However, their application is limited by the requirement of sufficient amounts of high quality nucleic acid samples. Therefore, when only a single cell or a very small number of cells are available or are preferred, the whole genomic sequencing or functional genomic objectives cannot be achieved conventionally and require a robust amplification method. This review highlights DNA amplification technologies and summarizes the strategies currently utilized for whole genome sequencing of a single cell, with specific focus on studies investigating microorganisms; An outline for targeted re-sequencing enabling the analysis of larger genomes is also provided. Furthermore, the review presents the emerging functional genomic applications using next-generation sequencing or microarray analysis to examine genome-wide transcriptional profile, chromatin modification and other types of protein-DNA binding profile, and CpG methylation mapping in a single cell or a very low quantity of cells. The nature of these technologies and their prospects are also addressed.
Precision Clinical Medicine | 2018
Jialing Zhang; Stephan Stanislaw Späth; Sadie L. Marjani; Wengeng Zhang; Xinghua Pan
Abstract Cancer is a heterogeneous disease with unique genomic and phenotypic features that differ between individual patients and even among individual tumor regions. In recent years, large-scale genomic studies and new next-generation sequencing technologies have uncovered more scientific details about tumor heterogeneity, with significant implications for the choice of specific molecular biomarkers and clinical decision making. Genomic heterogeneity significantly contributes to the generation of a diverse cell population during tumor development and progression, representing a determining factor for variation in tumor treatment response. It has been considered a prominent contributor to therapeutic failure, and increases the likelihood of resistance to future therapies in most common cancers. The understanding of molecular heterogeneity in cancer is a fundamental component of precision oncology, enabling the identification of genomic alteration of key genes and pathways that can be targeted therapeutically. Here, we review the emerging knowledge of tumor genomics and heterogeneity, as well as potential implications for precision medicine in cancer treatment and new therapeutic discoveries. An analysis and interpretation of the TCGA database was included.