Saeed Shafti-Keramat
Medical University of Vienna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Saeed Shafti-Keramat.
Journal of Virology | 2003
Saeed Shafti-Keramat; Alessandra Handisurya; Ernst Kriehuber; Guerrino Meneguzzi; Katharina Slupetzky; Reinhard Kirnbauer
ABSTRACT Papillomaviruses replicate in stratified epithelia of skin and mucosa. Infection with certain human papillomavirus (HPV) types is the main cause of anogenital neoplasia, in particular cervical cancer. Early events of papillomavirus infectivity are poorly understood. While heparan sulfate proteoglycans (HSPGs) mediate initial binding to the cell surface, the class of proteins carrying heparan sulfates has not been defined. Here we examined two processes of papillomavirus infection, attachment of virus-like particles (VLP) to cells and infection with authentic HPV type 11 (HPV11) virions. Of the HSPGs, syndecan-1 is the major epithelial form and is strongly upregulated in wound edge keratinocytes. We employed K562 cells, which lack HSPGs except minor amounts of endogenous betaglycan, and stable clones that express cDNAs of syndecan-1, syndecan-4, or glypican-1. Binding of VLP correlated with levels of heparan sulfate on the cell surface. Parental K562 bound HPV16 VLP weakly, whereas all three K562 transfectants demonstrated enhanced binding, with the highest binding capacity observed for syndecan-1-transfected cells, which also expressed the most HSPG. For HPV11 infectivity assays, a high virion inoculum was required to infect K562 cells, whereas ectopic expression of syndecan-1 increased permissiveness eightfold and expression of syndecan-4 or glypican-1 fourfold. Infection of keratinocytes was eliminated by treatment with heparitinase, but not phospholipase C, further implicating the syndecan family of integral membrane proteins as receptor proteins. Human keratinocytes with a homozygous deletion of α6 integrin are permissive for HPV11 infection. These results indicate that several HSPGs can serve as HPV receptors and support a putative role for syndecan-1, rather than α6 integrin, as a primary receptor protein in natural HPV infection of keratinocytes.
Journal of Investigative Dermatology | 2013
Christina Schellenbacher; Kihyuck Kwak; Dieter Fink; Saeed Shafti-Keramat; Bettina Huber; Christoph Jindra; Helena Faust; Joakim Dillner; Richard Roden; Reinhard Kirnbauer
Licensed human papillomavirus (HPV) vaccines, based on virus-like particles (VLPs) self-assembled from major capsid protein L1, afford type-restricted protection against HPV types 16/18/6/11 (or 16/18 for the bivalent vaccine), which cause 70% of cervical cancers (CxCas) and 90% of genital warts. However, they do not protect against less prevalent high-risk (HR) types causing 30% of CxCa, or cutaneous HPV. In contrast, vaccination with the minor capsid protein L2 induces low-level immunity to type-common epitopes. Chimeric RG1-VLP presenting HPV16 L2 amino acids 17–36 (RG1 epitope) within the DE-surface loop of HPV16 L1 induced cross-neutralizing antisera. We hypothesized that RG1-VLP vaccination protects against a large spectrum of mucosal and cutaneous HPV infections in vivo. Immunization with RG1-VLP adjuvanted with human-applicable alum-MPL (aluminum hydroxide plus 3-O-desacyl-4′-monophosphoryl lipid A) induced robust L2 antibodies (ELISA titers 2,500–12,500), which (cross-)neutralized mucosal HR HPV16/18/45/37/33/52/58/35/39/51/59/68/73/26/69/34/70, low-risk HPV6/11/32/40, and cutaneous HPV2/27/3/76 (titers 25–1,000) using native virion- or pseudovirion (PsV)-based assays, and a vigorous cytotoxic T lymphocyte response by enzyme-linked immunospot. In vivo, mice were efficiently protected against experimental vaginal challenge with mucosal HR PsV types HPV16/18/45/31/33/52/58/35/39/51/59/68/56/73/26/53/66/34 and low-risk HPV6/43/44. Enduring protection was demonstrated 1 year after vaccination. RG1-VLP is a promising next-generation vaccine with broad efficacy against all relevant mucosal and also cutaneous HPV types.
Journal of Immunology | 2006
Eduardo Zamora; Alessandra Handisurya; Saeed Shafti-Keramat; David R. Borchelt; Katherine Conant; Christopher Cox; Juan C. Troncoso; Reinhard Kirnbauer
Immunization with amyloid-β (Aβ) prevents the deposition of Aβ in the brain and memory deficits in transgenic mouse models of Alzheimer’s disease (AD), opening the possibility for immunotherapy of AD in humans. Unfortunately, the first human trial of Aβ vaccination was complicated, in a small number of vaccinees, by cell-mediated meningoencephalitis. To develop an Aβ vaccine that lacks the potential to induce autoimmune encephalitis, we have generated papillomavirus-like particles (VLP) that display 1–9 aa of Aβ protein repetitively on the viral capsid surface (Aβ-VLP). This Aβ peptide was chosen because it contains a functional B cell epitope, but lacks known T cell epitopes. Rabbit and mouse vaccinations with Aβ-VLP were well tolerated and induced high-titer autoAb against Aβ, that inhibited effectively assembly of Aβ1–42 peptides into neurotoxic fibrils in vitro. Following Aβ-VLP immunizations of APP/presenilin 1 transgenic mice, a model for human AD, we observed trends for reduced Aβ deposits in the brain and increased numbers of activated microglia. Furthermore, Aβ-VLP vaccinated mice also showed increased levels of Aβ in plasma, suggesting efflux from the brain into the vascular compartment. These results indicate that the Aβ-VLP vaccine induces an effective humoral immune response to Aβ and may thus form a basis to develop a safe and efficient immunotherapy for human AD.
FEBS Journal | 2007
Alessandra Handisurya; Sabine Gilch; Dorian Winter; Saeed Shafti-Keramat; Dieter Maurer; Hermann M. Schätzl; Reinhard Kirnbauer
Prion diseases are fatal neurodegenerative disorders caused by proteinaceous infectious pathogens termed prions (PrPSc). To date, there is no prophylaxis or therapy available for these transmissible encephalopathies. Passive immunization with monclonal antibodies recognizing the normal host‐encoded prion protein (PrPC) has been reported to abolish PrPSc infectivity and to delay onset of disease. Because of established immunologic tolerance against the widely expressed PrPC, active immunization appears to be difficult to achieve. To overcome this limitation, papillomavirus‐like particles were generated that display a nine amino acid B‐cell epitope, DWEDRYYRE, of the murine/rat prion protein in an immunogenic capsid surface loop, by insertion into the L1 major capsid protein of bovine papillomavirus type 1. The PrP peptide was selected on the basis of its previously suggested central role in prion pathogenesis. Immunization with PrP–virus‐like particles induced high‐titer antibodies to PrP in rabbit and in rat, without inducing overt adverse effects. As determined by peptide‐specific ELISA, rabbit immune sera recognized the inserted murine/rat epitope and also cross‐reacted with the homologous rabbit/human epitope differing in one amino acid residue. In contrast, rat immune sera recognized the murine/rat peptide only. Sera of both species reacted with PrPC in its native conformation in mouse brain and on rat pheochromocytoma cells, as determined by immunoprecipitation and fluorescence‐activated cell sorting analysis. Importantly, rabbit anti‐PrP serum contained high‐affinity antibody that inhibited de novo synthesis of PrPSc in prion‐infected cells. If also effective in vivo, PrP–virus‐like particle vaccination opens a unique possibility for immunologic prevention of currently fatal and incurable prion‐mediated diseases.
Journal of General Virology | 2011
Bettina Hartl; Edmund K. Hainisch; Saeed Shafti-Keramat; Reinhard Kirnbauer; Annunziata Corteggio; Giuseppe Borzacchiello; Reinhard Tober; Christina Kainzbauer; Barbara Pratscher; Sabine Brandt
Bovine papillomavirus types 1 and 2 (BPV-1 and BPV-2) are known to induce common equine skin tumours, termed sarcoids. Recently, it was demonstrated that vaccination with BPV-1 virus-like particles (VLPs) is safe and highly immunogenic in horses. To establish a BPV-1 challenge model for evaluation of the protective potential of BPV-1 VLPs, four foals were injected intradermally with infectious BPV-1 virions and with viral genome-based and control inocula, and monitored daily for tumour development. Blood was taken before inoculation and at weekly intervals. BPV-1-specific serum antibodies were detected by a pseudo-virion neutralization assay. Total nucleic acids extracted from tumours, intact skin and PBMCs were tested for the presence of BPV-1 DNA and mRNA using PCR and RT-PCR, respectively. Intralesional E5 oncoprotein expression was determined by immunofluorescence. Pseudo-sarcoids developed exclusively at sites inoculated with virions. Tumours became palpable 11-32 days after virion challenge, reached a size of ≤20 mm in diameter and then resolved in ≤6 months. No neutralizing anti-BPV-1 serum antibodies were detectable pre- or post-challenge. BPV-1 DNA was present in lesions but not in intact skin. In PBMCs, viral DNA was already detectable before lesions were first palpable, in concentrations correlating directly with tumour growth kinetics. PBMCs from two of two foals also harboured E5 mRNA. Immunofluorescence revealed the presence of the E5 protein in tumour fibroblasts, but not in the apparently normal epidermis overlying the lesions. Together with previous findings obtained in horses and cows, these data suggest that papillomavirus infection may include a viraemic phase.
Virology | 2009
Saeed Shafti-Keramat; Christina Schellenbacher; Alessandra Handisurya; Neil D. Christensen; Bärbel Reininger; Sabine Brandt; Reinhard Kirnbauer
Infection with bovine papillomavirus type 1 (BPV1) or BPV2 induces fibropapillomas in cows and skin sarcoids in horses. Prophylactic vaccination targeting BPV1 and BPV2 may reduce the incidence of these economically important diseases. The L1 major capsid proteins of BPV1 and BPV2 were expressed in Sf-9 insect cells and both self-assembled into virus-like particles (VLPs). Using conformation-dependent monoclonal antibodies (mAb) both type-specific and shared epitopes were detected. Antisera were raised against BPV1 or BPV2 VLP using alum adjuvant, and their (cross)neutralization capacity was tested by C127 neutralization assays using native BPV1 and BPV2 virions, or by BPV1 pseudovirion assay. Antisera induced by either VLP vaccine were able to robustly (cross-)neutralize heterologous as well as homologous types, indicating that BPV1 and BPV2 are closely related serotypes. These results suggest that a monovalent BPV1 (or BPV2) VLP vaccine may potentially protect against both BPV1 and BPV2 infections and associated diseases.
PLOS ONE | 2015
Bettina Huber; Christina Schellenbacher; Christoph Jindra; Dieter Fink; Saeed Shafti-Keramat; Reinhard Kirnbauer
Persistent infection with oncogenic human papillomaviruses (HPV) types causes all cervical and a subset of other anogenital and oropharyngeal carcinomas. Four high-risk (hr) mucosal types HPV16, 18, 45, or 59 cause almost all cervical adenocarcinomas (AC), a subset of cervical cancer (CxC). Although the incidence of cervical squamous cell carcinoma (SCC) has dramatically decreased following introduction of Papanicolaou (PAP) screening, the proportion of AC has relatively increased. Cervical SCC arise mainly from the ectocervix, whereas AC originate primarily from the endocervical canal, which is less accessible to obtain viable PAP smears. Licensed (bivalent and quadrivalent) HPV vaccines comprise virus-like particles (VLP) of the most important hr HPV16 and 18, self-assembled from the major capsid protein L1. Due to mainly type-restricted efficacy, both vaccines do not target 13 additional hr mucosal types causing 30% of CxC. The papillomavirus genus alpha species 7 (α7) includes a group of hr types of which HPV18, 45, 59 are proportionally overrepresented in cervical AC and only partially (HPV18) targeted by current vaccines. To target these types, we generated a chimeric vaccine antigen that consists of a cross-neutralizing epitope (homologue of HPV16 RG1) of the L2 minor capsid protein of HPV45 genetically inserted into a surface loop of HPV18 L1 VLP (18L1-45RG1). Vaccination of NZW rabbits with 18L1-45RG1 VLP plus alum-MPL adjuvant induced high-titer neutralizing antibodies against homologous HPV18, that cross-neutralized non-cognate hr α7 types HPV39, 45, 68, but not HPV59, and low risk HPV70 in vitro, and induced a robust L1-specific cellular immune response. Passive immunization protected mice against experimental vaginal challenge with pseudovirions of HPV18, 39, 45 and 68, but not HPV59 or the distantly related α9 type HPV16. 18L1-45RG1 VLP might be combined with our previously described 16L1-16RG1 VLP to develop a second generation bivalent vaccine with extended spectrum against hr HPV.
PLOS ONE | 2017
Bettina Huber; Christina Schellenbacher; Saeed Shafti-Keramat; Christoph Jindra; Neil D. Christensen; Reinhard Kirnbauer
Common cutaneous human papillomavirus (HPV) types induce skin warts, whereas species beta HPV are implicated, together with UV-radiation, in the development of non-melanoma skin cancer (NMSC) in immunosuppressed patients. Licensed HPV vaccines contain virus-like particles (VLP) self-assembled from L1 major capsid proteins that provide type-restricted protection against mucosal HPV infections causing cervical and other ano-genital and oro-pharyngeal carcinomas and warts (condylomas), but do not target heterologous HPV. Experimental papillomavirus vaccines have been designed based on L2 minor capsid proteins that contain type-common neutralization epitopes, to broaden protection to heterologous mucosal and cutaneous HPV types. Repetitive display of the HPV16 L2 cross-neutralization epitope RG1 (amino acids (aa) 17–36) on the surface of HPV16 L1 VLP has greatly enhanced immunogenicity of the L2 peptide. To more directly target cutaneous HPV, L1 fusion proteins were designed that incorporate the RG1 homolog of beta HPV17, the beta HPV5 L2 peptide aa53-72, or the common cutaneous HPV4 RG1 homolog, inserted into DE surface loops of HPV1, 5, 16 or 18 L1 VLP scaffolds. Baculovirus expressed chimeric proteins self-assembled into VLP and VLP-raised NZW rabbit immune sera were evaluated by ELISA and L1- and L2-based pseudovirion (PsV) neutralizing assays, including 12 novel beta PsV types. Chimeric VLP displaying the HPV17 RG1 epitope, but not the HPV5L2 aa53-72 epitope, induced cross-neutralizing humoral immune responses to beta HPV. In vivo cross-protection was evaluated by passive serum transfer in a murine PsV challenge model. Immune sera to HPV16L1-17RG1 VLP (cross-) protected against beta HPV5/20/24/38/96/16 (but not type 76), while antisera to HPV5L1-17RG1 VLP cross-protected against HPV20/24/96 only, and sera to HPV1L1-4RG1 VLP cross-protected against HPV4 challenge. In conclusion, RG1-based VLP are promising next generation vaccine candidates to target cutaneous HPV infections.
Virology | 2015
Christina Schellenbacher; Saeed Shafti-Keramat; Bettina Huber; Dieter Fink; Sabine Brandt; Reinhard Kirnbauer
The consistent and specific presence of Equus caballus papillomavirus type 2 (EcPV2) DNA and mRNA in equine genital squamous cell carcinoma (gSCC) is suggestive of an etiological role in tumor development. To further validate this concept, EcPV2-neutralizing serum antibody titers were determined by an EcPV2 pseudovirion (PsV) neutralization assay. Furthermore, an EcPV2 L1 virus-like particle (VLP)-based vaccine was generated and its prophylactic efficacy evaluated in vivo. All 6/6 gSCC-affected, but only 3/20 tumor-free age-matched animals revealed EcPV2-neutralizing serum antibody titers by PsV assay. Vaccination of NZW rabbits and BalbC mice with EcPV2 L1 VLP using Freund׳s or alum respectively as adjuvant induced high-titer neutralizing serum antibodies (1600-12,800). Passive transfer with rabbit EcPV2-VLP immune sera completely protected mice from experimental vaginal EcPV2 PsV infection. These findings support the impact of EcPV2 in equine gSCC development and recommend EcPV2 L1 VLP as prophylactic vaccine against EcPV2 infection and associated disease in equids.
Journal of General Virology | 2017
Edmund K. Hainisch; Hans Abel-Reichwald; Saeed Shafti-Keramat; Barbara Pratscher; Annunziata Corteggio; Giuseppe Borzacchiello; Maria Wetzig; Christoph Jindra; Alexander Tichy; Reinhard Kirnbauer; Sabine Brandt
We have previously shown that immunization of horses with BPV1 L1 virus-like particles (VLP) is safe and highly immunogenic, and that bovine papillomavirus types 1 and 2 (BPV1, BPV2) are closely related serotypes. Here we evaluated the protective potential of a BPV1 L1 VLP vaccine against experimental BPV1 and BPV2 challenge, and studied the safety and immunogenicity of a bivalent EcPV2/BPV1 L1 VLP vaccine. Fourteen healthy horses were immunized with BPV1 L1 VLPs (100 µg/injection) plus adjuvant on days 0 and 28, whilst seven remained unvaccinated. On day 42, all 21 horses were challenged intradermally at ten sites of the neck with 107 BPV1 virions per injection. In analogy, 14 horses immunized twice with EcPV2 plus BPV1 L1 VLPs (50 µg each) and seven control animals were challenged with 107 BPV2 virions/injection. Immunization with BPV1 L1 VLPs alone induced a robust antibody response (day-42 median titre: 12,800) and BPV1-inoculated skin remained unchanged in 13/14 vaccinated horses. Immunization with the bivalent vaccine was safe, resulted in lower median day-42 antibody titres of 400 for BPV1, and 1600 for EcPV2, and conferred significant yet incomplete cross-protection from BPV2-induced tumour formation, with 11/14 horses developing small, short-lived papules. Control horses developed pseudo-sarcoids at all inoculation sites. The monovalent BPV1 L1 VLP vaccine proved highly effective in protecting horses from BPV1-induced pseudo-sarcoid formation. Incomplete protection from BPV2-induced tumour development conferred by the bivalent vaccine is due to the poorer immune response by immune interference or lower cross-neutralization titres to heterologous BPV2 virions.We have previously shown that immunization of horses with bovine papillomavirus type 1 (BPV1) L1 virus-like particles (VLPs) is safe and highly immunogenic and that BPV1 and bovine papillomavirus type 2 (BPV2) are closely related serotypes. Here we evaluated the protective potential of a BPV1 L1 VLP vaccine against experimental BPV1 and BPV2 challenge and studied the safety and immunogenicity of a bivalent equine papillomavirus type 2 (EcPV2)/BPV1 L1 VLP vaccine. Fourteen healthy horses were immunized with BPV1 L1 VLPs (100 µg per injection) plus adjuvant on days 0 and 28, while seven remained unvaccinated. On day 42, all 21 horses were challenged intradermally at 10 sites of the neck with 107 BPV1 virions per injection. In analogy, 14 horses immunized twice with EcPV2 plus BPV1 L1 VLPs (50 µg each) and seven control animals were challenged with 107 BPV2 virions per injection. Immunization with BPV1 L1 VLPs alone induced a robust antibody response (day 42 median titre: 12 800), and BPV1-inoculated skin remained unchanged in 13/14 vaccinated horses. Immunization with the bivalent vaccine was safe, resulted in lower median day 42 antibody titres of 400 for BPV1 and 1600 for EcPV2 and conferred significant yet incomplete cross-protection from BPV2-induced tumour formation, with 11/14 horses developing small, short-lived papules. Control horses developed pseudo-sarcoids at all inoculation sites. The monovalent BPV1 L1 VLP vaccine proved highly effective in protecting horses from BPV1-induced pseudo-sarcoid formation. Incomplete protection from BPV2-induced tumour development conferred by the bivalent vaccine is due to the poorer immune response by immune interference or lower cross-neutralization titres to heterologous BPV2 virions.