Safacan Kolemen
Bilkent University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Safacan Kolemen.
Journal of the American Chemical Society | 2010
O. Altan Bozdemir; Ruslan Guliyev; Onur Buyukcakir; Sencer Selcuk; Safacan Kolemen; Gulcihan Gulseren; Tugrul Nalbantoglu; Hande Boyaci; Engin U. Akkaya
Remarkably versatile chemistry of Bodipy dyes allows the design and straightforward synthesis of multivalent-multitopic derivatives, which, with judicious selection of metal ion-ligand pairs based on known affinities, affords control and manipulation of photoinduced electron transfer and internal charge transfer processes as desired. We have demonstrated that metal ions acting as modulators (or inputs, in digital design parlance) can generate absorbance changes in accordance with the operation of a half-adder. In addition, an AND logic gate in the emission mode was delivered using a different binucleating arrangement of ligands. A molecular equivalent of a three-input AND logic gate was also obtained exploiting differential binding affinities of metal ions for different ligands. The results suggest that different metal ions can be used as nonannihilating inputs, selectively targeting various ligands incorporated within a single fluorophore, and with careful design, diverse photophysical processes can be selectively modulated, resulting in a range of signals, useful in molecular logic design, and offering an enticing potential for multianalyte chemosensors.
Angewandte Chemie | 2011
Yusuf Cakmak; Safacan Kolemen; Selin Duman; Yavuz Dede; Yusuf Dolen; Bilal Kilic; Ziya Kostereli; Leyla Tatar Yıldırım; A. Lale Doğan; Dicle Guc; Engin U. Akkaya
Photodynamic therapy (PDT) is a treatment modality for certain malignant (skin, head and neck, gastrointestinal, gynecological cancers), premalignant (actinic keratosis), and nonmalignant (psoriasis) indications. Broader acceptance by the medical community and applicability is hampered, at least in part, by the less than optimal photophysical characteristics of the porphyrin derivatives. This situation sparked a worldwide search for novel sensitizers leading to new compounds, some holding more promise than others. The primary cytotoxic agent involved in the photodynamic action is singlet oxygen (Dg), the efficient generation of which is linked invariably to the intersystem crossing (ISC) efficiency of the excited sensitizer. Most organic dyes have low triplet quantum yields, and in many recent candidates for photodynamic sensitizers, heavy atoms are incorporated into the structure as a strategy to improve spin–orbit coupling leading to facilitated intersystem crossing. While this approach seems fail-safe, incorporation of heavy atoms such as bromine, iodine, selenium, and certain lanthanides very often leads to increased “dark toxicity”. Unlike traditional chemotherapy agents, in principle, photodynamic therapy sensitizers themselves can be nontoxic, either at cellular or organ levels, even at relatively high concentrations. We have been interested in trying to find alternative ways of achieving increased intersystem crossing without the use of heavy atoms to minimize dark toxicity, turning our attention to the excitedstate properties of the sensitizers. Designing efficient photoinduced O2 generators requires that any existing operative fluorescence cycle of the fluorophore, which is through the S0!S1!S0 states, has to be perturbed so as to minimize or shut down the S1!S0 deactivation, and switch to the triplet surface once S1 is accessed. A general design principle for a favorable S1!T1 transition from an electronic structure viewpoint would in principle require the structural and electronic compatibility of the S1 and T1 states to surpass that of the S1–S0 pair. Once multiple electronic states come into play, quantum mechanical calculations providing a detailed understanding of the electronic structure are extremely helpful. Multi-configurational self-consistent field (MCSCF) techniques are the stateof-the-art computational chemistry approaches, when near degeneracies and excited states are considered. These methods may not reach chemical accuracy ( 2–3 kcalmol ) for computing total energies, but they are crucial for a qualitatively correct description of the excited states and are capable of providing a conceptually complete picture of the photophysics taking place. Therefore, we mainly employed a popular variant of MCSCF techniques; the complete active space SCF (CASSCF) method in combination with relatively large basis sets and different active spaces. Details of CASSCF calculations are provided in the Supporting Information. Our calculations on the parent Bodipy (4,4-difluoro-4-bora-3a,4adiaza-s-indacene, Scheme 1) showed that natural orbital occupancies of the S1 state describe an open-shell singlet with essentially double (> 1.9) or zero (< 0.1) electrons for all orbitals except the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) that are singly occupied (see the Supporting Information, Figure S1). It is no surprise to observe a fluorophore with low triplet quantum yield to have an excited state that possesses only two orbitals with single occupancy. Hence, to achieve our goal of efficient switching to the triplet manifold, we have to access excited states that differ from the ones that arise from simple HOMO!LUMO transitions. Among multiply excited configurations, doubly substituted ones are particularly important in enhancing S1–T1 coupling as shown by the seminal work of Salem and Rowland and the following work by Michl. Thus, the substitutions should invoke a simultaneous two-electron excitation from the Scheme 1. Structure and numbering of the parent Bodipy compound. [*] Y. Cakmak, S. Kolemen, B. Kilic, Prof. Dr. E. U. Akkaya UNAM-Institute of Materials Science and Nanotechnology Bilkent University, Ankara, 06800 (Turkey) E-mail: [email protected]
Organic Letters | 2009
Onur Buyukcakir; O. Altan Bozdemir; Safacan Kolemen; Sundus Erbas; Engin U. Akkaya
1,3,5,7-Tetramethyl-Bodipy derivatives undergo Knoevenagel-type condensations with aromatic aldehydes to ultimately yield tetrastyryl-Bodipy derivatives. The resulting dyes absorb and emit strongly in the near IR. As the versatility of the Bodipy dyes are fully appreciated, these new tetrastyryl dyes are likely to be featured in a variety of functional supramolecular systems.
Organic Letters | 2010
Safacan Kolemen; Yusuf Cakmak; Sule Erten-Ela; Yigit Altay; Johannes C. Brendel; Mukundan Thelakkat; Engin U. Akkaya
Boron-dipyrrin dyes, through rational design, yield promising new materials. With strong electron-donor functionalities and anchoring groups for attachment to nanocrystalline TiO(2), these dyes proved useful as sensitizers in dye-sensitized solar cells. Their applicability in a solid-state electrolyte regime offers additional opportunities for practical applications.
Organic Letters | 2013
Murat Işık; Tugba Ozdemir; Ilke Simsek Turan; Safacan Kolemen; Engin U. Akkaya
Judicious design of BODIPY dyes carrying nitroethenyl substituents in conjugation with the BODIPY core yields dyes that respond to biological thiols by both absorbance and emission changes. Incorporation of solubilizing ethyleneglycol units ensures water solubility. The result is bright signaling of biologically relevant thiols in the longer wavelength region of the visible spectrum and in aqueous solutions.
Angewandte Chemie | 2015
Safacan Kolemen; Murat Işık; Gyoung Mi Kim; Dabin Kim; Hao Geng; Muhammed Buyuktemiz; Tugce Karatas; Xian-Fu Zhang; Yavuz Dede; Juyoung Yoon; Engin U. Akkaya
The photosensitized generation of reactive oxygen species, and particularly of singlet oxygen [O2 (a(1) Δg )], is the essence of photodynamic action exploited in photodynamic therapy. The ability to switch singlet oxygen generation on/off would be highly valuable, especially when it is linked to a cancer-related cellular parameter. Building on recent findings related to intersystem crossing efficiency, we designed a dimeric BODIPY dye with reduced symmetry, which is ineffective as a photosensitizer unless it is activated by a reaction with intracellular glutathione (GSH). The reaction alters the properties of both the ground and excited states, consequently enabling the efficient generation of singlet oxygen. Remarkably, the designed photosensitizer can discriminate between different concentrations of GSH in normal and cancer cells and thus remains inefficient as a photosensitizer inside a normal cell while being transformed into a lethal singlet oxygen source in cancer cells. This is the first demonstration of such a difference in the intracellular activity of a photosensitizer.
Organic Letters | 2014
Murat Işık; Ruslan Guliyev; Safacan Kolemen; Yigit Altay; Berna Senturk; Turgay Tekinay; Engin U. Akkaya
A selective probe for glutathione was designed and synthesized. The design incorporates spatial and photophysical constraints for the maximal emission signal. Thus, pHs, as well as the intracellular thiol concentrations, determine the emission signal intensity through a tight control of charge-transfer and PeT processes. The probe works satisfactorily inside the human breast adenocarcinoma cells, highlighting GSH distribution in the cytosol.
Angewandte Chemie | 2016
Safacan Kolemen; Tugba Ozdemir; Dayoung Lee; Gyoung Mi Kim; Tugce Karatas; Juyoung Yoon; Engin U. Akkaya
The photodynamic therapy of cancer is contingent upon the sustained generation of singlet oxygen in the tumor region. However, tumors of the most metastatic cancer types develop a region of severe hypoxia, which puts them beyond the reach of most therapeutic protocols. More troublesome, photodynamic action generates acute hypoxia as the process itself diminishes cellular oxygen reserves, which makes it a self-limiting method. Herein, we describe a new concept that could eventually lead to a change in the 100 year old paradigm of photodynamic therapy and potentially offer solutions to some of the lingering problems. When gold nanorods with tethered endoperoxides are irradiated at 808 nm, the endoperoxides undergo thermal cycloreversion, resulting in the generation of singlet oxygen. We demonstrate that the amount of singlet oxygen produced in this way is sufficient for triggering apoptosis in cell cultures.
Organic Letters | 2014
Safacan Kolemen; Yusuf Cakmak; Ziya Kostereli; Engin U. Akkaya
A dissymmetrically substituted orthogonal BODIPY dimer and an orthogonal BODIPY trimer exist as two stable conformers, which are in fact atropisomeric enantiomers. The racemic mixture can be separated by HPLC using a chiral stationary phase. These enantiomeric derivatives hold great potential as chiral agents in asymmetric synthesis, fluorogenic/chromogenic sensing, and biological applications.
New Journal of Chemistry | 2015
Yusuf Cakmak; Safacan Kolemen; Muhammed Buyuktemiz; Yavuz Dede; Sule Erten-Ela
Three Bodipy dyes with strong absorptivities in the visible and near infrared regions were designed, synthesized and their potential as photosensitizers for liquid electrolyte-based dye sensitized solar cells have been evaluated. For the first time Bodipy derivatives with bis-dimethylfluorenyl amine donor groups which were known for their bulky structures as donor groups have been used together. We altered our mostly used triphenylamine group with these and investigated the dye-sensitized solar cell efficiencies of this new class of Bodipy dyes.