Safak Bulut
École Polytechnique Fédérale de Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Safak Bulut.
Journal of Physical Chemistry B | 2013
Sergey P. Verevkin; Dzmitry H. Zaitsau; Vladimir N. Emel’yanenko; Andrei V. Yermalayeu; Christoph Schick; Hongjun Liu; Edward J. Maginn; Safak Bulut; Ingo Krossing; Roland S. Kalb
Vaporization enthalpy of an ionic liquid (IL) is a key physical property for applications of ILs as thermofluids and also is useful in developing liquid state theories and validating intermolecular potential functions used in molecular modeling of these liquids. Compilation of the data for a homologous series of 1-alkyl-3-methylimidazolium bis(trifluoromethane-sulfonyl)imide ([C(n)mim][NTf2]) ILs has revealed an embarrassing disarray of literature results. New experimental data, based on the concurring results from quartz crystal microbalance, thermogravimetric analyses, and molecular dynamics simulation have revealed a clear linear dependence of IL vaporization enthalpies on the chain length of the alkyl group on the cation. Ambiguity of the procedure for extrapolation of vaporization enthalpies to the reference temperature 298 K was found to be a major source of the discrepancies among previous data sets. Two simple methods for temperature adjustment of vaporization enthalpies have been suggested. Resulting vaporization enthalpies obey group additivity, although the values of the additivity parameters for ILs are different from those for molecular compounds.
Journal of Physical Chemistry B | 2010
Ulrich Preiss; Safak Bulut; Ingo Krossing
The melting points (T(fus)) of crystalline ionic liquids are calculated from the ratio of the fusion enthalpy and entropy at the melting point where solid and liquid phases are in chemical equilibrium (DeltaG(T) = 0), and therefore, T(fus) = Delta(fus)H(T)/Delta(fus)S(T) (if T = T(fus)). We specify two variants of this method that have no need for experimental input or tedious simulations but rely on simple calculations feasible with standard quantum chemical program codes and may further be augmented by COSMO-RS. Only single ions are used as input, making the demanding calculation of ion pairs superfluous. The fusion enthalpy is obtained by the principles of volume-based thermodynamics (ion volumes as the major contributor), which may additionally be augmented by COSMO-RS interaction enthalpies for increased accuracy. The calculation of the fusion entropy largely relies on a procedure originally developed for neutral organic molecules that was extended to molecular ionic compounds. Its contributors are the site symmetry sigma and the number of torsion angles tau, which are both determined individually for the cation and the anion and are included as their geometric mean. The two methods were tested on several sets of ionic liquids (ILs) and a combination of all sets (67 ILs) that span an experimental melting temperature range of 337 degrees C. The average error of the simpler, volume-based model (only ion volumes, sigma, and tau as input) is 36.4 degrees C and that of the augmented method (using ion volumes, sigma, tau, and COSMO-RS output) is 24.5 degrees C.
ChemPhysChem | 2011
Safak Bulut; Philipp Eiden; Witali Beichel; John M. Slattery; Tom Beyersdorff; Thomas Schubert; Ingo Krossing
A series of bis(trifluoromethylsulfonyl)imide ionic liquids (ILs) with classical as well as mildly functionalized cations was prepared and their viscosities and conductivities were determined as a function of the temperature. Both were analyzed with respect to Arrhenius, Litovitz and Vogel-Fulcher-Tammann (VFT) behaviors, as well as in the context of their molecular volume (V(m)). Their viscosity and conductivity are highly correlated with V(m)/T or related expressions (R(2) ≥0.94). With the knowledge of V(m) of new cations, these correlations allow the temperature-dependent prediction of the viscosity and conductivity of hitherto unknown, non- or mildly functionalized ILs with low error bars (0.05 and 0.04 log units, respectively). The influence of the cation structure and mild functionalization on the physical properties was studied with systematically altered cations, in which V(m) remained similar. The T(o) parameter obtained from the VFT fits was compared to the experimental glass temperature (T(g)) and the T(g)/T(o) ratio for each IL was calculated using both experimental values and Angells relationship. With Walden plots we investigated the IL ionicity and interpreted it in relation to the cation effects on the physical IL properties. We checked the validity of these V(m)/T relations by also including the recently published variable temperature viscosity and conductivity data of the [Al(OR(F))(4)](-) ILs with R(F) =C(H)(CF(3))(2) (error bars for the prediction: 0.09 and 0.10 log units, respectively).
Journal of Physical Chemistry B | 2011
Philipp Eiden; Safak Bulut; Tobias Köchner; Christian Friedrich; Thomas Schubert; Ingo Krossing
The viscosity (η) and electrical conductivity (κ) of ionic liquids are, next to the melting point, the two key properties of general interest. The knowledge of temperature-dependent η and κ data before their first synthesis would permit a much more target-oriented development of ionic liquids. We present in this work a novel approach to predict the viscosity and electrical conductivity of an ionic liquid without further input of experimental data. For the viscosity, only some basic physical observables like the Gibbs solvation energy (ΔG(solv)(*,∞)), which was calculated at the affordable DFT-level (RI-)BP86/TZVP/COSMO, the molecular radius, calculated from the molecular volume V(m) of the ion volumes, and the symmetry number (σ), according to group theory, are necessary as input. The temperature dependency (253-373 K) of the viscosity (4-19000 mPa s) was modeled by an Arrhenius approach. An alternative way, which avoids the deficits of the Arrhenius relation by a series expansion in the exponential term, is also presented. On the basis of their close connection, the same set of parameters is suitable to describe the electrical conductivity as well (238-468 K, 0.003-193 mS/cm). Nevertheless, more elegant alternatives like the usage of the Stokes-Einstein/Nernst-Einstein relation or the Walden rule are highlighted in this work. During this investigation, we additionally found an approach to predict the dielectric constant ε* of an ionic liquid at 298 K by using V(m) and ΔG(solv)(*,∞) between ε* = 9 and 43.
Journal of Chemical Physics | 2010
Mian-Mian Huang; Safak Bulut; Ingo Krossing; Hermann Weingärtner
We report on dielectric relaxation spectra of six homologous ionic liquids (ILs) with tetra(hexafluoroisopropoxy)aluminate ([Al(hfip)(4)](-)) as a common anion. The dominating mode on the time scale of several 100 ps mainly results from cation reorientation. Because the viscosities are low and cation modification does not substantially change the viscosity, these ILs are interesting candidates for testing hydrodynamic models of rotational dynamics. The calculated hydrodynamic volumes are extraordinarily low, and roughly agree with values calculated from literature data for ILs with the same cations, but different anions. Comparison with magnetic relaxation data shows that the peculiarities are founded in the rotational dynamics and are not special to dielectric relaxation. Collectively, the observations make a strong case against the applicability of hydrodynamic approaches to the orientational dynamics of ions.
ChemPhysChem | 2012
Safak Bulut; M. A. Ab Rani; Tom Welton; Paul D. Lickiss; Ingo Krossing
Two new ionic liquids (ILs) with siloxane-functionalized cations and the weakly coordinating tetraalkoxyaluminate [Al(hfip)(4)](-) (hfip=hexafluoroisopropoxy) are prepared and characterized by nuclear magnetic resonance (NMR), infrared (IR) and Raman spectroscopy. With melting points below 0 °C they qualify as room temperature ILs (RTILs). Their temperature-dependent viscosities and conductivities, together with those of two [Tf(2)N](-) ILs with the same cations and a further siloxane-functionalized [Tf(2)N](-) IL, are measured between 0 and 80 °C, and all are described by the Vogel-Fulcher-Tammann (VFT) equations. We note that the [Al(hfip)(4)](-) ILs have lower viscosities than their [Tf(2)N](-) analogues at all measured temperatures and higher conductivities at room temperature.
Chemistry: A European Journal | 2018
Shuliang Yang; Li Peng; Emad Oveisi; Safak Bulut; Daniel Teav Sun; Mehrdad Asgari; Olga Trukhina; Wendy L. Queen
Transition-metal phosphides have received tremendous attention during the past few years because they are earth-abundant, cost-effective, and show outstanding catalytic performance in several electrochemically driven conversions including hydrogen evolution, oxygen evolution, and water splitting. As one member of the transition-metal phosphides, Cox P-based materials have been widely explored as electrocatalyts; however, their application in the traditional thermal catalysis are rarely reported. In this work, cobalt phosphide/carbon nanocubes are designed and their catalytic activity for the selective hydrogenation of nitroarenes to anilines is studied. A high surface area metal-organic framework (MOF), ZIF-67, is infused with red phosphorous, and then pyrolysis promotes the facile production of the phosphide-based catalysts. The resulting composite, consisting of Co2 P/CNx nanocubes, is shown to exhibit excellent catalytic performance in the selective hydrogenation of nitroarenes to anilines. To the best of our knowledge, this is the first report showing catalytic activity of a cobalt phosphide in nitroarenes hydrogenation.
Journal of Organic Chemistry | 2018
Safak Bulut; Wendy L. Queen
The formation of C-N bonds with aryl amines is one of the most widely studied reactions in organic chemistry. Despite this, it is still highly challenging, often requiring expensive, precious metal-based catalysts. Here we report an easy catalyst-free methodology for constructing C-N bonds. The method, which proceeds via the in situ formation of closed ring amidinium ions, allows the preparation of a series of symmetrical and/or unsymmetrical aryl diamines in notably high yields (82-98%) and purity and with a variety of different substituents. The methodology is shown successful for the preparation of aryl diamines having para- and/or meta-substituted carboxyl, nitro, bromo, methoxy, or methyl groups. This green synthetic pathway, which is catalyst free, requires only three steps, and proceeds without the need for purification. Further, it is a new sustainable, economically viable method to achieve an otherwise challenging bond formation.
Chemsuschem | 2018
Shuliang Yang; Li Peng; Daniel T. Sun; Emad Oveisi; Safak Bulut; Wendy L. Queen
MOF-derived Co3 S4 /CN hollow nanoboxes (CN=nitrogen-doped carbon) was used to catalyze the chemoselective reduction of nitroarenes to anilines under mild reaction conditions with H2 as the reducing agent. The catalyst provides high conversion efficiencies and selectivities for a variety of nitroarene substrates that contain electron-donating or electron-withdrawing substituents under mild reaction conditions (in methanol at 60 °C). Further, the nanobox inhibits both dehalogenation and vinyl hydrogenation reactions, which are common limitations of state-of-the-art Pd-based catalysts. Because the reactions result in pure aniline products, the need for separation by column chromatography is eliminated. The resulting anilines are easily separated from the methanolic reaction solution in just three simple steps (centrifugation, decantation, and drying). If employed in industrial processes, catalysts of this kind would significantly reduce the amount of waste organic solvent generated and thus satisfy the need for sustainable chemical processes.
Chemistry: A European Journal | 2018
Shuliang Yang; Li Peng; Safak Bulut; Wendy L. Queen
Owing to the almost boundless structural tunability, MOF and MOF-derived catalysts have recently exhibited structures of higher complexity, and hence, have demonstrated activity in a wide array of organic transformations. These reactions have a broad range of important applications ranging from pharmaceuticals to agriculture. Given the increasing number of publications in the area, this Minireview is focused on the most recent advancements in thermally driven organic transformations using both MOFs, nanoparticle@MOF (NP@MOF) composites, and several classes of MOF-derived materials. The most recent advancements made in materials design and the utility of these materials in a broad range of reactions are discussed.