Sagar Sengupta
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sagar Sengupta.
Nature Reviews Molecular Cell Biology | 2005
Sagar Sengupta; Curtis C. Harris
p53 mutants that lack DNA-binding activities, and therefore, transcriptional activities, are among the most common mutations in human cancer. Recently, a new role for p53 has come to light, as the tumour suppressor also functions in DNA repair and recombination. In cooperation with its function in transcription, the transcription-independent roles of p53 contribute to the control and efficiency of DNA repair and recombination.
Cancer Research | 2004
S. Perwez Hussain; Paul Amstad; Peijun He; Ana I. Robles; Shawn E. Lupold; Ichiro Kaneko; Masato Ichimiya; Sagar Sengupta; Leah E. Mechanic; Shu Okamura; Lorne J. Hofseth; Matthew Moake; Makoto Nagashima; Kathleen Forrester; Curtis C. Harris
p53-mediated apoptosis may involve the induction of redox-controlling genes, resulting in the production of reactive oxygen species. Microarray expression analysis of doxorubicin exposed, related human lymphoblasts, p53 wild-type (WT) Tk6, and p53 mutant WTK1 identified the p53-dependent up-regulation of manganese superoxide dismutase (MnSOD) and glutathione peroxidase 1 (GPx). Consensus p53 binding sequences were identified in human MnSOD and GPx promoter regions. A 3-fold increase in the MnSOD promoter activity was observed after the induction of p53 in Li-Fraumeni syndrome (LFS) fibroblast, TR9-7, expressing p53 under the control of a tetracycline-regulated promoter. An increased protein expression of endogenous MnSOD and GPx also positively correlated with the level of p53 induction in TR9-7 cells. However, catalase (CAT) protein expression remained unaltered after p53 induction. We also examined the expression of MnSOD, GPx, and CAT in a panel of normal or LFS fibroblasts, containing either WT or mutant p53. We found increased MnSOD enzymatic activity, MnSOD mRNA expression, and MnSOD and GPx protein in LFS fibroblasts carrying a WT p53 allele when compared with homozygous mutant p53 isogenic cells. The CAT protein level was unchanged in these cells. We observed both the release of cytochrome C and Ca2+ from the mitochondria into the cytoplasm and an increased frequency of apoptotic cells after p53 induction in the TR9-7 cells that coincided with an increased expression of MnSOD and GPx, and the level of reactive oxygen species. The increase in apoptosis was reduced by the antioxidant N-acetylcysteine. These results identify a novel mechanism of p53-dependent apoptosis in which p53-mediated up-regulation of MnSOD and GPx, but not CAT, produces an imbalance in antioxidant enzymes and oxidative stress.
The EMBO Journal | 2003
Sagar Sengupta; Steven P. Linke; Remy Pedeux; Qin Yang; Julie Farnsworth; Susan Garfield; Jerry W. Shay; Nathan A. Ellis; Bohdan Wasylyk; Curtis C. Harris
Diverse functions, including DNA replication, recombination and repair, occur during S phase of the eukaryotic cell cycle. It has been proposed that p53 and BLM help regulate these functions. We show that p53 and BLM accumulated after hydroxyurea (HU) treatment, and physically associated and co‐localized with each other and with RAD51 at sites of stalled DNA replication forks. HU‐induced relocalization of BLM to RAD51 foci was p53 independent. However, BLM was required for efficient localization of either wild‐type or mutated (Ser15Ala) p53 to these foci and for physical association of p53 with RAD51. Loss of BLM and p53 function synergistically enhanced homologous recombination frequency, indicating that they mediated the process by complementary pathways. Loss of p53 further enhanced the rate of spontaneous sister chromatid exchange (SCE) in Bloom syndrome (BS) cells, but not in their BLM‐corrected counterpart, indicating that involvement of p53 in regulating spontaneous SCE is BLM dependent. These results indicate that p53 and BLM functionally interact during resolution of stalled DNA replication forks and provide insight into the mechanism of genomic fidelity maintenance by these nuclear proteins.
Journal of Cell Biology | 2004
Sagar Sengupta; Ana I. Robles; Steven P. Linke; Natasha Sinogeeva; Ran Zhang; Remy Pedeux; Irene M. Ward; Arkady Celeste; André Nussenzweig; Junjie Chen; Thanos D. Halazonetis; Curtis C. Harris
Blooms syndrome is a rare autosomal recessive genetic disorder characterized by chromosomal aberrations, genetic instability, and cancer predisposition, all of which may be the result of abnormal signal transduction during DNA damage recognition. Here, we show that BLM is an intermediate responder to stalled DNA replication forks. BLM colocalized and physically interacted with the DNA damage response proteins 53BP1 and H2AX. Although BLM facilitated physical interaction between p53 and 53BP1, 53BP1 was required for efficient accumulation of both BLM and p53 at the sites of stalled replication. The accumulation of BLM/53BP1 foci and the physical interaction between them was independent of γ-H2AX. The active Chk1 kinase was essential for both the accurate focal colocalization of 53BP1 with BLM and the consequent stabilization of BLM. Once the ATR/Chk1- and 53BP1-mediated signal from replicational stress is received, BLM functions in multiple downstream repair processes, thereby fulfilling its role as a caretaker tumor suppressor.
Molecular and Cellular Biology | 2005
Rémy Pedeux; Sagar Sengupta; Jiang Cheng Shen; Oleg N. Demidov; Shin'ichi Saito; Hitoshi Onogi; Kensuke Kumamoto; Stephen Wincovitch; Susan Garfield; Mary G. McMenamin; Makoto Nagashima; Steven R. Grossman; Ettore Appella; Curtis C. Harris
ABSTRACT ING2 is a candidate tumor suppressor gene that can activate p53 by enhancing its acetylation. Here, we demonstrate that ING2 is also involved in p53-mediated replicative senescence. ING2 protein expression increased in late-passage human primary cells, and it colocalizes with serine 15-phosphorylated p53. ING2 and p53 also complexed with the histone acetyltransferase p300. ING2 enhanced the interaction between p53 and p300 and acted as a cofactor for p300-mediated p53 acetylation. The level of ING2 expression directly modulated the onset of replicative senescence. While overexpression of ING2 induced senescence in young fibroblasts in a p53-dependent manner, expression of ING2 small interfering RNA delayed the onset of senescence. Hence, ING2 can act as a cofactor of p300 for p53 acetylation and thereby plays a positive regulatory role during p53-mediated replicative senescence.
Oncogene | 2005
Sagar Sengupta; Akira Shimamoto; Minori Koshiji; Remy Pedeux; Marek Rusin; Elisa A. Spillare; Jiang Cheng Shen; L. Eric Huang; Noralane M. Lindor; Yasuhiro Furuichi; Curtis C. Harris
RECQ4 is a member of the RecQ helicase family, which has been implicated in the regulation of DNA replication, recombination and repair. p53 modulates the functions of RecQ helicases including BLM and WRN. In this study, we demonstrate that p53 can regulate the transcription of RECQ4. Using nontransformed, immortalized normal human fibroblasts, we show that p53-dependent downregulation of RECQ4 expression occurred in G1-arrested cells, both in the absence or presence of exogenous DNA damage. Wild-type p53 (but not the tumor-derived mutant forms) repressed RECQ4 promoter activity. The camptothecin or etoposide-dependent p53-mediated repression was attenuated by trichostatin A (TSA), an inhibitor of histone deacetylases (HDACs). Repression of the RECQ4 promoter was accompanied with an increased accumulation of HDAC1, and the loss of SP1 and p53 binding to the promoter. The simultaneous formation of a camptothecin-dependent p53-SP1 complex indicated its occurrence outside of the RECQ4 promoter. These data suggest that p53-mediated repression of RECQ4 transcription during DNA damage results from the modulation of the promoter occupancy of transcription activators and repressors.
Journal of Cell Science | 2012
Siddharth De; Jyoti Kumari; Richa Mudgal; Priyanka Modi; Shruti Gupta; Kazunobu Futami; Hideyuki Goto; Noralane M. Lindor; Yasuhiro Furuichi; Debasisa Mohanty; Sagar Sengupta
Mutations in RECQL4 helicase are associated with Rothmund–Thomson syndrome (RTS). A subset of RTS patients is predisposed to cancer and is sensitive to DNA damaging agents. The enhanced sensitivity of cells from RTS patients correlates with the accumulation of transcriptionally active nuclear p53. We found that in untreated normal human cells these two nuclear proteins, p53 and RECQL4, instead colocalize in the mitochondrial nucleoids. RECQL4 accumulates in mitochondria in all phases of the cell cycle except S phase and physically interacts with p53 only in the absence of DNA damage. p53–RECQL4 binding leads to the masking of the nuclear localization signal of p53. The N-terminal 84 amino acids of RECQL4 contain a mitochondrial localization signal, which causes the localization of RECQL4–p53 complex to the mitochondria. RECQL4–p53 interaction is disrupted after stress, allowing p53 translocation to the nucleus. In untreated normal cells RECQL4 optimizes de novo replication of mtDNA, which is consequently decreased in fibroblasts from RTS patients. Wild-type RECQL4-complemented RTS cells show relocalization of both RECQL4 and p53 to the mitochondria, loss of p53 activation, restoration of de novo mtDNA replication and resistance to different types of DNA damage. In cells expressing Δ84 RECQL4, which cannot translocate to mitochondria, all the above functions are compromised. The recruitment of p53 to the sites of de novo mtDNA replication is also regulated by RECQL4. Thus these findings elucidate the mechanism by which p53 is regulated by RECQL4 in unstressed normal cells and also delineates the mitochondrial functions of the helicase.
Annals of the New York Academy of Sciences | 2004
Sagar Sengupta; Bohdan Wasylyk
Abstract: The p53 tumor suppressor plays a key role in protection from the effects of different physiological stresses (DNA damage, hypoxia, transcriptional defects, etc.), and loss of its activity has dire consequences, such as cancer. Its activity is finely tuned through interactions with other important regulatory circuits in the cell. Recently, striking evidence has emerged for crosstalk with another class of important regulators, the steroid hormone receptors, and in particular the glucocorticoid (GR), androgen (AR), and estrogen (ER) receptors. These receptors are important in maintaining homeostasis in response to internal and external stresses (GR) and in the development, growth, and maintenance of the male and female reproductive systems (AR and ER, respectively). We review how p53 interacts closely with these receptors, to the extent that they share the same E3 ubiquitin ligase, the MDM2 oncoprotein. We discuss the different physiological contexts in which such interactions occur, and also how these interactions have been undermined in various pathological situations. We will describe future areas for research, with special emphasis on GR, and how certain common features, such as cytoplasmic anchoring of p53 by the receptors, may become targets for the development of therapeutic interventions. Given the importance of GR in inflammation, erythropoiesis, and autoimmune diseases, and the importance of AR and ER in prostate and breast cancer (respectively), the studies on p53 interactions with the steroid receptors will be an important domain in the near future.
Oncogene | 2004
Qin Yang; Ran Zhang; Xin W. Wang; Steven P. Linke; Sagar Sengupta; Ian D. Hickson; Graziella Pedrazzi; Claudia Perrera; Igor Stagljar; Susan J. Littman; Paul Modrich; Curtis C. Harris
The human MSH2/6 complex is essential for mismatch recognition during the repair of replication errors. Although mismatch repair components have been implicated in DNA homologous recombination repair, the exact function of hMSH2/6 in this pathway is unclear. Here, we show that the recombinant hMSH2/6 protein complex stimulated the ability of the Blooms syndrome gene product, BLM, to process Holliday junctions in vitro, an activity that could also be regulated by p53. Consistent with these observations, hMSH6 colocalized with BLM and phospho-ser15-p53 in hydroxyurea-induced RAD51 nuclear foci that may correspond to the sites of presumed stalled DNA replication forks and more likely the resultant DNA double-stranded breaks. In addition, we show that hMSH2 and hMSH6 coimmunoprecipitated with BLM, p53, and RAD51. Both the number of RAD51 foci and the amount of the BLM–p53–RAD51 complex are increased in hMSH2- or hMSH6-deficient cells. These data suggest that hMSH2/6 formed a complex with BLM–p53–RAD51 in response to the damaged DNA forks during double-stranded break repair.
EMBO Reports | 2012
Akhilesh Kumar; Shweta Tikoo; Shuvadeep Maity; Shantanu Sengupta; Sagar Sengupta; Amandeep Kaur; Anand Kumar Bachhawat
ChaC1 is a mammalian proapoptic protein of unknown function induced during endoplasmic reticulum stress. We show using in vivo studies and novel in vitro assays that the ChaC family of proteins function as γ‐glutamyl cyclotransferases acting specifically to degrade glutathione but not other γ‐glutamyl peptides. The overexpression of these proteins (but not the catalytically dead E>Q mutants) led to glutathione depletion and enhanced apoptosis in yeast. The ChaC family is conversed across all phyla and represents a new pathway for glutathione degradation in living cells, and the first cytosolic pathway for glutathione degradation in mammalian cells.