Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sage R. Bauers is active.

Publication


Featured researches published by Sage R. Bauers.


Materials | 2015

Misfit layer compounds and ferecrystals: Model systems for thermoelectric nanocomposites

Devin R. Merrill; Daniel B. Moore; Sage R. Bauers; Matthias Falmbigl; David C. Johnson

A basic summary of thermoelectric principles is presented in a historical context, following the evolution of the field from initial discovery to modern day high-zT materials. A specific focus is placed on nanocomposite materials as a means to solve the challenges presented by the contradictory material requirements necessary for efficient thermal energy harvest. Misfit layer compounds are highlighted as an example of a highly ordered anisotropic nanocomposite system. Their layered structure provides the opportunity to use multiple constituents for improved thermoelectric performance, through both enhanced phonon scattering at interfaces and through electronic interactions between the constituents. Recently, a class of metastable, turbostratically-disordered misfit layer compounds has been synthesized using a kinetically controlled approach with low reaction temperatures. The kinetically stabilized structures can be prepared with a variety of constituent ratios and layering schemes, providing an avenue to systematically understand structure-function relationships not possible in the thermodynamic compounds. We summarize the work that has been done to date on these materials. The observed turbostratic disorder has been shown to result in extremely low cross plane thermal conductivity and in plane thermal conductivities that are also very small, suggesting the structural motif could be attractive as thermoelectric materials if the power factor could be improved. The first 10 compounds in the [(PbSe)1+δ]m(TiSe2)n family (m, n ≤ 3) are reported as a case study. As n increases, the magnitude of the Seebeck coefficient is significantly increased without a simultaneous decrease in the in-plane electrical conductivity, resulting in an improved thermoelectric power factor.


IUCrJ | 2015

Demonstration of thin film pair distribution function analysis (tfPDF) for the study of local structure in amorphous and crystalline thin films.

Kirsten M. Ø. Jensen; Anders Bank Blichfeld; Sage R. Bauers; Suzannah R. Wood; Eric Dooryhee; David C. Johnson; Bo B. Iversen; Simon J. L. Billinge

It is shown how normal-incidence X-ray total scattering can be used to obtain high-quality pair distribution functions from amorphous and crystalline thin films on much thicker substrates, allowing a range of studies of the local structure in film materials.


ACS Nano | 2015

Influence of defects on the charge density wave of ([SnSe]1+δ)1(VSe2)1 ferecrystals

Matthias Falmbigl; Daniel Putzky; Jeffrey Ditto; Marco Esters; Sage R. Bauers; Filip Ronning; David C. Johnson

A series of ferecrystalline compounds ([SnSe]1+δ)1(VSe2)1 with varying Sn/V ratios were synthesized using the modulated elemental reactant technique. Temperature-dependent specific heat data reveal a phase transition at 102 K, where the heat capacity changes abruptly. An abrupt increase in electrical resistivity occurs at the same temperature, correlated with an abrupt increase in the Hall coefficient. Combined with the magnitude and nature of the specific heat discontinuity, this suggests that the transition is similar to the charge density wave transitions in transition metal dichalcogenides. An ordered intergrowth was formed over a surprisingly wide compositional range of Sn/V ratios of 0.89 ≤ 1 + δ ≤ 1.37. X-ray diffraction and transmission electron microscopy reveal the formation of various volume defects in the compounds in response to the nonstoichiometry. The electrical resistivity and Hall coefficient data of samples with different Sn/V ratios show systematic variation in the carrier concentration with the Sn/V ratio. There is no significant change in the onset temperature of the charge density wave transition, only a variation in the carrier densities before and after the transition. Given the sensitivity of the charge density wave transitions of transition metal dichalcogenides to variations in composition, it is very surprising that the charge density wave transition observed at 102 K for ([SnSe]1.15)1(VSe2)1 is barely influenced by the nonstoichiometry and structural defects. This might be a consequence of the two-dimensional nature of the structurally independent VSe2 layers.


Journal of Materials Chemistry C | 2014

Electrochemical synthesis of flat-[Ga13−xInx(μ3-OH)6(μ-OH)18(H2O)24(NO3)15] clusters as aqueous precursors for solution-processed semiconductors

Matthew E. Carnes; Christopher C. Knutson; Athavan Nadarajah; Milton N. Jackson; Anna F. Oliveri; Kevin M. Norelli; Brandon M. Crockett; Sage R. Bauers; Hidekel A. Moreno-Luna; Benjamen N. Taber; Daniel. J. Pacheco; Jarred Z. Olson; Kaylena R. Brevick; Claire E. Sheehan; Darren W. Johnson; Shannon W. Boettcher

Flat-[Ga13(μ3-OH)6(μ-OH)18(H2O)24](NO3)15 (Ga13) and heterometallic [Ga13−xInx(μ3-OH)6(μ-OH)18(H2O)24](NO3)15 (x = 5, 4) clusters were synthesized by the electrolysis of metal nitrate salt solutions to directly form, without purification, aqueous precursor inks for InxGa13−xOy semiconducting films in <2 h. Raman spectroscopy and 1H-NMR spectroscopy confirm the presence of [Ga13−xInx(μ3-OH)6(μ-OH)18(H2O)24(NO3)15] clusters. Bottom-gate thin-film transistors were fabricated using ∼15 nm-thick Ga13−xInxOy films as the active channel layer, displaying turn-on voltages of −2 V, and on/off current ratios greater than 106. The average channel mobility of the transistors fabricated from the cluster solutions generated by electrolysis was ∼5 cm−2 V−1s−1 which was more than twice that of transistors fabricated from control solutions with the simple nitrate salt precursors of ∼2 cm−2 V−1s−1. Electrochemical cluster synthesis thus provides a simple and direct route to aqueous precursors for solution-processed inorganic electronics.


Journal of the American Chemical Society | 2015

Structural Evolution of Iron Antimonides from Amorphous Precursors to Crystalline Products Studied by Total Scattering Techniques

Sage R. Bauers; Suzannah R. Wood; Kirsten M. Ø. Jensen; Anders Bank Blichfeld; Bo B. Iversen; Simon J. L. Billinge; David C. Johnson

Homogeneous reaction precursors may be used to form several solid-state compounds inaccessible by traditional synthetic routes, but there has been little development of techniques that allow for a priori prediction of what may crystallize in a given material system. Here, the local structures of FeSbx designed precursors are determined and compared with the structural motifs of their crystalline products. X-ray total scattering and atomic pair distribution function (PDF) analysis are used to show that precursors that first nucleate a metastable FeSb3 compound share similar local structure to the product. Interestingly, precursors that directly crystallize to thermodynamically stable FeSb2 products also contain local structural motifs of the metastable phase, despite their compositional disagreement. While both crystalline phases consist of distorted FeSb6 octahedra with Sb shared between either two or three octahedra as required for stoichiometry, a corner-sharing arrangement indicative of AX3-type structures is the only motif apparent in the PDF of either precursor. Prior speculation was that local composition controlled which compounds nucleate from amorphous intermediates, with different compositions favoring different local arrangements and hence different products. This data suggests that local environments in these amorphous intermediates may not be very sensitive to overall composition. This can provide insight into potential metastable phases which may form in a material system, even with a precursor that does not crystallize to the kinetically stabilized product. Determination of local structure in homogeneous amorphous reaction intermediates from techniques such as PDF can be a valuable asset in the development of systematic methods to prepare targeted solid-state compounds from designed precursors.


Journal of Materials Chemistry C | 2015

Carrier dilution in TiSe2 based intergrowth compounds for enhanced thermoelectric performance

Sage R. Bauers; Devin R. Merrill; Daniel B. Moore; David C. Johnson

Synthesis and electrical properties of kinetically stabilized (PbSe)1+δ(TiSe2)n thin-film intergrowths are reported for 1 ≤ n ≤ 18. A linear increase in the c-lattice parameter of the intergrowth is observed as n is increased and the slope is consistent with the inclusion of an additional TiSe2 structural unit as n is incremented by 1 and the observed intercept is consistent with the expected thickness of a PbSe bilayer. The charge donated to the TiSe2 constituent from the PbSe is diluted across more layers as n is increased, leading to a systematic increase in the Seebeck coefficient. The room temperature resistivity values of the reported compounds are all on the order of 10−5 Ω m and depend on defect densities that affect the mobility, making the magnitude of the resistivity less sensitive to n. The temperature dependence is metallic for large n, with a slight upturn at low temperatures due to localization of carriers for small n values. The power factor increases with n, including the highest reported for chalcogenide misfit layered and related compounds, showing that nanostructuring and modulation doping are an effective means of tuning the power factor of thermoelectric intergrowth materials. Since these compounds have very low thermal conductivity due to structural anisotropy and misregistration between intergrowth constituents, this suggests that varying their nanoarchitecture is a promising approach to obtain high values of zT.


Nano Letters | 2017

Cross-Plane Seebeck Coefficient Measurement of Misfit Layered Compounds (SnSe)n(TiSe2)n (n = 1,3,4,5)

Zhen Li; Sage R. Bauers; Nirakar Poudel; Danielle M. Hamann; Xiaoming Wang; David Choi; Keivan Esfarjani; Li Shi; David C. Johnson; Stephen B. Cronin

We report cross-plane thermoelectric measurements of misfit layered compounds (SnSe)n(TiSe2)n (n = 1,3,4,5), approximately 50 nm thick. Metal resistance thermometers are fabricated on the top and bottom of the (SnSe)n(TiSe2)n material to measure the temperature difference and heat transport through the material directly. By varying the number of layers in a supercell, n, we vary the interface density while maintaining a constant global stoichiometry. The Seebeck coefficient measured across the (SnSe)n(TiSe2)n samples was found to depend strongly on the number of layers in the supercell (n). When n decreases from 5 to 1, the cross-plane Seebeck coefficient decreases from -31 to -2.5 μV/K, while the cross-plane effective thermal conductivity decreases by a factor of 2, due to increased interfacial phonon scattering. The cross-plane Seebeck coefficients of the (SnSe)n(TiSe2)n are very different from the in-plane Seebeck coefficients, which are higher in magnitude and less sensitive to the number of layers in a supercell, n. We believe this difference is due to the different carrier types in the n-SnSe and p-TiSe2 layers and the effect of tunneling on the cross-plane transport.


ACS Nano | 2018

Structural Changes as a Function of Thickness in [(SnSe)1+δ]mTiSe2 Heterostructures.

Danielle M. Hamann; Alexander C. Lygo; Marco Esters; Devin R. Merrill; Jeffrey Ditto; Duncan R. Sutherland; Sage R. Bauers; David C. Johnson

Single- and few-layer metal chalcogenide compounds are of significant interest due to structural changes and emergent electronic properties on reducing dimensionality from three to two dimensions. To explore dimensionality effects in SnSe, a series of [(SnSe)1+δ]mTiSe2 intergrowth structures with increasing SnSe layer thickness (m = 1-4) were prepared from designed thin-film precursors. In-plane diffraction patterns indicated that significant structural changes occurred in the basal plane of the SnSe constituent as m is increased. Scanning transmission electron microscopy cross-sectional images of the m = 1 compound indicate long-range coherence between layers, whereas the m ≥ 2 compounds show extensive rotational disorder between the constituent layers. For m ≥ 2, the images of the SnSe constituent contain a variety of stacking sequences of SnSe bilayers. Density functional theory calculations suggest that the formation energy is similar for several different SnSe stacking sequences. The compounds show unexpected transport properties as m is increased, including the first p-type behavior observed in (MSe)m(TiSe2)n compounds. The resistivity of the m ≥ 2 compounds is larger than for m = 1, with m = 2 being the largest. At room temperature, the Hall coefficient is positive for m = 1 and negative for m = 2-4. The Hall coefficient of the m = 2 compound changes sign as temperature is decreased. The room-temperature Seebeck coefficient, however, switches from negative to positive at m = 3. These properties are incompatible with single band transport indicating that the compounds are not simple composites.


Zeitschrift Fur Kristallographie | 2017

Experimental and theoretical investigation of the chromium–vanadium–antimony system

Matthias Regus; S. Polesya; Gerhard Kuhn; S. Mankovsky; Sage R. Bauers; David C. Johnson; H. Ebert; Wolfgang Bensch

Abstract The binary compound V3Sb (V2.64Sb, V3Sb and V3.24Sb) was synthesized as thin multilayered films with varying V:Sb ratios. The V-content determines the crystallization temperature and it is highest for the film with the lowest amount of V. Ternary chromium–vanadium–antimony (Cr–V–Sb) films were prepared containing Cr from 10 to 51 at-% with the Sb content fixed to yield M3Sb (M=Cr, V). In the as-deposited state the layers are already interdiffused which is most likely caused by the very low repeating unit thickness between 0.29 and 0.68 nm investigated by X-ray diffraction experiments. All ternary compounds crystallized from the amorphous state with crystallization temperatures depending more on the repeating unit thickness than on chemical composition. For most samples the simultaneous crystallization of the two phases M3Sb (A15 structure type) and MSb is observed. The crystalline A15 compounds are only stable in a limited temperature range and decompose at elevated temperatures. Compared to the binary Cr–Sb system crystallization of the hexagonal phase MSb (M=Cr, V) occurs at remarkably higher temperatures, i.e. in the ternary system nucleation and crystallization of this phase is hindered. The chemical composition requires short-range composition fluctuations to nucleate the binary phase. The first principles total energy calculations using the spin-polarized relativistic Korringa–Kohn–Rostoker (SPR-KKR) method confirm the experimental observations concerning the concentration-dependent stability of different phases of the Cr–V–Sb system. For the ratio M:Sb=3:1 the system is preferably stabilized in the A15 crystal structure for all possible Cr and V concentrations, while an increase of Sb content up to M:Sb=2:1 results in the stabilization of the Ni2In structure for almost all Cr concentrations. Only in the V-rich regime of the system the Heusler Ni2MnAl-type structure was found to be energetically more preferable.


Inorganic Chemistry | 2017

Long-Range Order in [(SnSe)1.2]1[TiSe2]1 Prepared from Designed Precursors

Danielle M. Hamann; Devin R. Merrill; Sage R. Bauers; Gavin Mitchson; Jeffrey Ditto; Sven P. Rudin; David C. Johnson

Self-assembly of designed precursors has enabled the synthesis of novel heterostructures that exhibit extensive rotational disorder between constituents. In (SnSe)1.2TiSe2 nanoscale regions of long-range order were observed in scanning transmission electron microscopy (STEM) cross sectional images. Here a combination of techniques are used to determine the structure of this compound, and the information is used to infer the origin of the order. In-plane X-ray diffraction indicates that the SnSe basal plane distorts to match TiSe2. This results in a rectangular unit cell that deviates from both the bulk structure and the square in-plane unit cell previously observed in heterostructures containing SnSe bilayers separated by layers of dichalcogenides. The distortion results from lattice matching of the two constituents, which occurs along the <100> SnSe and the <110> TiSe2 directions as √3 × aTiSe2 equals aSnSe. Fast Fourier transform analysis of the STEM images exhibits sharp maxima in hkl families where h,k ≠ 0. The period is the same as that observed for 00l reflections, indicating regions of long-range superlattice order in all directions. X-ray reciprocal space maps contain broad maxima in hkl families of TiSe2 and SnSe based reflections consistent with the superlattice period, indicating that long-range order is present throughout a significant fraction of the film. The STEM images show that <110> planes of TiSe2 are adjacent to <100> planes of SnSe. Density functional theory suggests the preferred orientation is due to favored directions of nucleation with significant energy differences between islands of SnSe with different orientation relative to TiSe2. The calculations suggest that the long-range order in (SnSe)1.2TiSe2 results from an accidental coincidence in the lattice parameters of SnSe and TiSe2. These findings support a layer by layer nucleation process for the self-assembly of heterostructures from designed precursors, which rationalizes how designed precursors enable compounds with different constituents, defined thicknesses, and specific layer sequences to be prepared.

Collaboration


Dive into the Sage R. Bauers's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge