Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sahand Hormoz is active.

Publication


Featured researches published by Sahand Hormoz.


Optics Express | 2008

Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K

Mikhail A. Belkin; Jonathan A. Fan; Sahand Hormoz; Federico Capasso; Suraj P. Khanna; Mohamed Lachab; A. G. Davies; E. H. Linfield

We report terahertz quantum cascade lasers operating in pulsed mode at an emission frequency of 3 THz and up to a maximum temperature of 178 K. The improvement in the maximum operating temperature is achieved by using a three-quantum-well active region design with resonant-phonon depopulation and by utilizing copper, instead of gold, for the cladding material in the metal-metal waveguides.


Nature | 2017

Synthetic recording and in situ readout of lineage information in single cells

Kirsten L. Frieda; James M. Linton; Sahand Hormoz; Joonhyuk Choi; Ke-Huan K. Chow; Zachary S. Singer; Mark W. Budde; Michael B. Elowitz; Long Cai

Reconstructing the lineage relationships and dynamic event histories of individual cells within their native spatial context is a long-standing challenge in biology. Many biological processes of interest occur in optically opaque or physically inaccessible contexts, necessitating approaches other than direct imaging. Here we describe a synthetic system that enables cells to record lineage information and event histories in the genome in a format that can be subsequently read out of single cells in situ. This system, termed memory by engineered mutagenesis with optical in situ readout (MEMOIR), is based on a set of barcoded recording elements termed scratchpads. The state of a given scratchpad can be irreversibly altered by CRISPR/Cas9-based targeted mutagenesis, and later read out in single cells through multiplexed single-molecule RNA fluorescence hybridization (smFISH). Using MEMOIR as a proof of principle, we engineered mouse embryonic stem cells to contain multiple scratchpads and other recording components. In these cells, scratchpads were altered in a progressive and stochastic fashion as the cells proliferated. Analysis of the final states of scratchpads in single cells in situ enabled reconstruction of lineage information from cell colonies. Combining analysis of endogenous gene expression with lineage reconstruction in the same cells further allowed inference of the dynamic rates at which embryonic stem cells switch between two gene expression states. Finally, using simulations, we show how parallel MEMOIR systems operating in the same cell could enable recording and readout of dynamic cellular event histories. MEMOIR thus provides a versatile platform for information recording and in situ, single-cell readout across diverse biological systems.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Design principles for self-assembly with short-range interactions

Sahand Hormoz; Michael P. Brenner

Recent experimental advances have opened up the possibility of equilibrium self-assembly of functionalized nanoblocks with a high degree of controllable specific interactions. Here, we propose design principles for selecting the short-range interactions between self-assembling components to maximize yield. We illustrate the approach with an example from colloidal engineering. We construct an optimal set of local interactions for eight colloidal particles (coated, e.g., with DNA strands) to assemble into a particular polytetrahedral cluster. Maximum yield is attained when the interactions between the colloids follow the design rules: All energetically favorable interactions have the same strength, as do all unfavorable ones, and the number of components and energies fall within the proposed range. In general, it might be necessary to use more component than strictly required for enforcing the ground state configuration. The results motivate design strategies for engineering components that can reliably self-assemble.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Direct observation of Kelvin waves excited by quantized vortex reconnection

Enrico Fonda; David P. Meichle; Nicholas T. Ouellette; Sahand Hormoz; Daniel P. Lathrop

Quantized vortices are key features of quantum fluids such as superfluid helium and Bose–Einstein condensates. The reconnection of quantized vortices and subsequent emission of Kelvin waves along the vortices are thought to be central to dissipation in such systems. By visualizing the motion of submicron particles dispersed in superfluid 4He, we have directly observed the emission of Kelvin waves from quantized vortex reconnection. We characterize one event in detail, using dimensionless similarity coordinates, and compare it with several theories. Finally, we give evidence for other examples of wavelike behavior in our system.


Scientific Reports | 2013

Amino acid composition of proteins reduces deleterious impact of mutations

Sahand Hormoz

The evolutionary origin of amino acid occurrence frequencies in proteins (composition) is not yet fully understood. We suggest that protein composition works alongside the genetic code to minimize impact of mutations on protein structure. First, we propose a novel method for estimating thermodynamic stability of proteins whose sequence is constrained to a fixed composition. Second, we quantify the average deleterious impact of substituting one amino acid with another. Natural proteome compositions are special in at least two ways: 1) Natural compositions do not generate more stable proteins than the average random composition, however, they result in proteins that are less susceptible to damage from mutations. 2) Natural proteome compositions that result in more stable proteins (i.e. those of thermophiles) are also tuned to have a higher tolerance for mutations. This is consistent with the observation that environmental factors selecting for more stable proteins also enhance the deleterious impact of mutations.


Bioinformatics | 2015

Inter-species prediction of protein phosphorylation in the sbv IMPROVER species translation challenge

Michael Biehl; Peter J. Sadowski; Gyan Bhanot; Erhan Bilal; Adel Dayarian; Pablo Meyer; Raquel Norel; Kahn Rhrissorrakrai; Michael D. Zeller; Sahand Hormoz

Motivation: Animal models are widely used in biomedical research for reasons ranging from practical to ethical. An important issue is whether rodent models are predictive of human biology. This has been addressed recently in the framework of a series of challenges designed by the systems biology verification for Industrial Methodology for Process Verification in Research (sbv IMPROVER) initiative. In particular, one of the sub-challenges was devoted to the prediction of protein phosphorylation responses in human bronchial epithelial cells, exposed to a number of different chemical stimuli, given the responses in rat bronchial epithelial cells. Participating teams were asked to make inter-species predictions on the basis of available training examples, comprising transcriptomics and phosphoproteomics data. Results: Here, the two best performing teams present their data-driven approaches and computational methods. In addition, post hoc analyses of the datasets and challenge results were performed by the participants and challenge organizers. The challenge outcome indicates that successful prediction of protein phosphorylation status in human based on rat phosphorylation levels is feasible. However, within the limitations of the computational tools used, the inclusion of gene expression data does not improve the prediction quality. The post hoc analysis of time-specific measurements sheds light on the signaling pathways in both species. Availability and implementation: A detailed description of the dataset, challenge design and outcome is available at www.sbvimprover.com. The code used by team IGB is provided under http://github.com/uci-igb/improver2013. Implementations of the algorithms applied by team AMG are available at http://bhanot.biomaps.rutgers.edu/wiki/AMG-sc2-code.zip. Contact: [email protected]


Proceedings of the National Academy of Sciences of the United States of America | 2015

Inferring epigenetic dynamics from kin correlations

Sahand Hormoz; Nicolas Desprat; Boris I. Shraiman

Significance Different cells in a clonal population can be in different phenotypic states, which persist for a few generations before switching to another state. Dynamics of switching between these states determines the extent of correlations between the phenotypes of related cells. Here we demonstrate—using ideas from statistical physics—that it is possible to infer simple stochastic dynamics along lineages from an instantaneous measurement of phenotypic correlations in a cell population with defined genealogy. The approach is validated using experimental observations on Pseudomonas aeruginosa colonies. Populations of isogenic embryonic stem cells or clonal bacteria often exhibit extensive phenotypic heterogeneity that arises from intrinsic stochastic dynamics of cells. The phenotypic state of a cell can be transmitted epigenetically in cell division, leading to correlations in the states of cells related by descent. The extent of these correlations is determined by the rates of transitions between the phenotypic states. Therefore, a snapshot of the phenotypes of a collection of cells with known genealogical structure contains information on phenotypic dynamics. Here, we use a model of phenotypic dynamics on a genealogical tree to define an inference method that allows extraction of an approximate probabilistic description of the dynamics from observed phenotype correlations as a function of the degree of kinship. The approach is tested and validated on the example of Pyoverdine dynamics in Pseudomonas aeruginosa colonies. Interestingly, we find that correlations among pairs and triples of distant relatives have a simple but nontrivial structure indicating that observed phenotypic dynamics on the genealogical tree is approximately conformal—a symmetry characteristic of critical behavior in physical systems. The proposed inference method is sufficiently general to be applied in any system where lineage information is available.


Bioinformatics | 2015

Predicting protein phosphorylation from gene expression: top methods from the IMPROVER Species Translation Challenge

Adel Dayarian; Roberto Romero; Zhiming Wang; Michael Biehl; Erhan Bilal; Sahand Hormoz; Pablo Meyer; Raquel Norel; Kahn Rhrissorrakrai; Gyan Bhanot; Feng Luo; Adi L. Tarca

MOTIVATION Using gene expression to infer changes in protein phosphorylation levels induced in cells by various stimuli is an outstanding problem. The intra-species protein phosphorylation challenge organized by the IMPROVER consortium provided the framework to identify the best approaches to address this issue. RESULTS Rat lung epithelial cells were treated with 52 stimuli, and gene expression and phosphorylation levels were measured. Competing teams used gene expression data from 26 stimuli to develop protein phosphorylation prediction models and were ranked based on prediction performance for the remaining 26 stimuli. Three teams were tied in first place in this challenge achieving a balanced accuracy of about 70%, indicating that gene expression is only moderately predictive of protein phosphorylation. In spite of the similar performance, the approaches used by these three teams, described in detail in this article, were different, with the average number of predictor genes per phosphoprotein used by the teams ranging from 3 to 124. However, a significant overlap of gene signatures between teams was observed for the majority of the proteins considered, while Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were enriched in the union of the predictor genes of the three teams for multiple proteins. AVAILABILITY AND IMPLEMENTATION Gene expression and protein phosphorylation data are available from ArrayExpress (E-MTAB-2091). Software implementation of the approach of Teams 49 and 75 are available at http://bioinformaticsprb.med.wayne.edu and http://people.cs.clemson.edu/∼luofeng/sbv.rar, respectively. CONTACT [email protected] or [email protected] or [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.


Journal of Theoretical Biology | 2013

Stem cell population asymmetry can reduce rate of replicative aging

Sahand Hormoz

Cycling tissues such as the intestinal epithelium, germ line, and hair follicles, require a constant flux of differentiated cells. These tissues are maintained by a population of stem cells, which generate differentiated progenies and self-renew. Asymmetric division of each stem cell into one stem cell and one differentiated cell can accomplish both tasks. However, in mammalian cycling tissues, some stem cells divide symmetrically into two differentiated cells and are replaced by a neighbor that divides symmetrically into two stem cells. Besides this heterogeneity in fate (population asymmetry), stem cells also exhibit heterogenous proliferation-rates; in the long run, however, all stem cells proliferate at the same average rate (equipotency). We construct and simulate a mathematical model based on these experimental observations. We show that the complex steady-state dynamics of population-asymmetric stem cells reduces the rate of replicative aging of the tissue-potentially lowering the incidence of somatic mutations and genetics diseases such as cancer. Essentially, slow-dividing stem cells proliferate and purge the population of the fast-dividing - older - cells which had undertaken the majority of the tissue-generation burden. As the number of slow-dividing cells grows, their cycling-rate increases, eventually turning them into fast-dividers, which are themselves replaced by newly emerging slow-dividers. Going beyond current experiments, we propose a mechanism for equipotency that can potentially halve the rate of replicative aging. Our results highlight the importance of a population-level understanding of stem cells, and may explain the prevalence of population asymmetry in a wide variety of cycling tissues.


Physical Review E | 2013

Quantum collapse and the second law of thermodynamics

Sahand Hormoz

A heat engine undergoes a cyclic operation while in equilibrium with the net result of conversion of heat into work. Quantum effects such as superposition of states can improve an engines efficiency by breaking detailed balance, but this improvement comes at a cost due to excess entropy generated from collapse of superpositions on measurement. We quantify these competing facets for a quantum ratchet composed of an ensemble of pairs of interacting two-level atoms. We suggest that the measurement postulate of quantum mechanics is intricately connected to the second law of thermodynamics. More precisely, if quantum collapse is not inherently random, then the second law of thermodynamics can be violated. Our results challenge the conventional approach of simply quantifying quantum correlations as a thermodynamic work deficit.

Collaboration


Dive into the Sahand Hormoz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael B. Elowitz

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Adel Dayarian

Kavli Institute for Theoretical Physics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mikhail A. Belkin

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge