Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Said A. Ghabrial is active.

Publication


Featured researches published by Said A. Ghabrial.


Archives of Virology | 2009

Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2015)

M. J. Adams; Elliot J. Lefkowitz; Andrew M. Q. King; Dennis H. Bamford; Mya Breitbart; Andrew J. Davison; Said A. Ghabrial; Alexander E. Gorbalenya; Nick J. Knowles; Peter J. Krell; Rob Lavigne; David Prangishvili; Hélène Sanfaçon; Stuart G. Siddell; Peter Simmonds; Eric B. Carstens

Changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses in February 2015 are listed.


Annual Review of Phytopathology | 2009

Viruses of Plant Pathogenic Fungi

Said A. Ghabrial; Nobuhiro Suzuki

Mycoviruses are widespread in all major groups of plant pathogenic fungi. They are transmitted intracellularly during cell division, sporogenesis, and cell fusion, but apparently lack an extracellular route for infection. Their natural host ranges are limited to individuals within the same or closely related vegetative compatibility groups. Recent advances, however, allowed the establishment of experimental host ranges for a few mycoviruses. Although the majority of known mycoviruses have dsRNA genomes that are packaged in isometric particles, an increasing number of usually unencapsidated mycoviruses with positive-strand RNA genomes have been reported. We discuss selected mycoviruses that cause debilitating diseases and/or reduce the virulence of their phytopathogenic fungal hosts. Such fungal-virus systems are valuable for the development of novel biocontol strategies and for gaining an insight into the molecular basis of fungal virulence. The availability of viral and host genome sequences and of transformation and transfection protocols for some plant pathogenic fungi will contribute to progress in fungal virology.


Proceedings of the National Academy of Sciences of the United States of America | 2010

A geminivirus-related DNA mycovirus that confers hypovirulence to a plant pathogenic fungus

Xiao Yu; Bo Li; Yanping Fu; Daohong Jiang; Said A. Ghabrial; Guoqing Li; You-Liang Peng; Jiatao Xie; Jiasen Cheng; Junbin Huang; Xianhong Yi

Mycoviruses are viruses that infect fungi and have the potential to control fungal diseases of crops when associated with hypovirulence. Typically, mycoviruses have double-stranded (ds) or single-stranded (ss) RNA genomes. No mycoviruses with DNA genomes have previously been reported. Here, we describe a hypovirulence-associated circular ssDNA mycovirus from the plant pathogenic fungus Sclerotinia sclerotiorum. The genome of this ssDNA virus, named Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-1), is 2166 nt, coding for a replication initiation protein (Rep) and a coat protein (CP). Although phylogenetic analysis of Rep showed that SsHADV-1 is related to geminiviruses, it is notably distinct from geminiviruses both in genome organization and particle morphology. Polyethylene glycol-mediated transfection of fungal protoplasts was successful with either purified SsHADV-1 particles or viral DNA isolated directly from infected mycelium. The discovery of an ssDNA mycovirus enhances the potential of exploring fungal viruses as valuable tools for molecular manipulation of fungi and for plant disease control and expands our knowledge of global virus ecology and evolution.


Virus Genes | 1998

Origin, adaptation and evolutionary pathways of fungal viruses.

Said A. Ghabrial

Fungal viruses or mycoviruses are widespread in fungi and are believed to be of ancient origin. They have evolved in concert with their hosts and are usually associated with symptomless infections. Mycoviruses are transmitted intracellularly during cell division, sporogenesis and cell fusion, and they lack an extracellular phase to their life cycles. Their natural host ranges are limited to individuals within the same or closely related vegetative compatibility groups. Typically, fungal viruses are isometric particles 25–50 nm in diameter, and possess dsRNA genomes. The best characterized of these belong to the family Totiviridae whose members have simple undivided dsRNA genomes comprised of a coat protein (CP) gene and an RNA dependent RNA polymerase (RDRP) gene. A recently characterized totivirus infecting a filamentous fungus was found to be more closely related to protozoan totiviruses than to yeast totiviruses suggesting these viruses existed prior to the divergence of fungi and protozoa. Although the dsRNA viruses at large are polyphyletic, based on RDRP sequence comparisons, the totiviruses are monophyletic. The theory of a cellular self-replicating mRNA as the origin of totiviruses is attractive because of their apparent ancient origin, the close relationships among their RDRPs, genome simplicity and the ability to use host proteins efficiently. Mycoviruses with bipartite genomes (partitiviruses), like the totiviruses, have simple genomes, but the CP and RDRP genes are on separate dsRNA segments. Because of RDRP sequence similarity, the partitiviruses are probably derived from a totivirus ancestor. The mycoviruses with unencapsidated dsRNA-like genomes (hypoviruses) and those with bacilliform (+) strand RNA genomes (barnaviruses) have more complex genomes and appear to have common ancestry with plant (+) strand RNA viruses in supergroup 1 with potyvirus and sobemovirus lineages, respectively. The La France isometric virus (LIV), an unclassified virus with multipartite dsRNA genome, is associated with a severe die-back disease of the cultivated mushroom. LIV appears to be of recent origin since it differs from its host in codon usage.


Journal of Virology | 2010

Widespread Horizontal Gene Transfer from Double-Stranded RNA Viruses to Eukaryotic Nuclear Genomes

Huiquan Liu; Yanping Fu; Daohong Jiang; Guoqing Li; Jiatao Xie; Jiasen Cheng; You-Liang Peng; Said A. Ghabrial; Xianhong Yi

ABSTRACT Horizontal gene transfer commonly occurs from cells to viruses but rarely occurs from viruses to their host cells, with the exception of retroviruses and some DNA viruses. However, extensive sequence similarity searches in public genome databases for various organisms showed that the capsid protein and RNA-dependent RNA polymerase genes from totiviruses and partitiviruses have widespread homologs in the nuclear genomes of eukaryotic organisms, including plants, arthropods, fungi, nematodes, and protozoa. PCR amplification and sequencing as well as comparative evidence of junction coverage between virus and host sequences support the conclusion that these viral homologs are real and occur in eukaryotic genomes. Sequence comparison and phylogenetic analysis suggest that these genes were likely transferred horizontally from viruses to eukaryotic genomes. Furthermore, we present evidence showing that some of the transferred genes are conserved and expressed in eukaryotic organisms and suggesting that these viral genes are also functional in the recipient genomes. Our findings imply that horizontal transfer of double-stranded RNA viral genes is widespread among eukaryotes and may give rise to functionally important new genes, thus entailing that RNA viruses may play significant roles in the evolution of eukaryotes.


Virology | 2015

50-plus years of fungal viruses.

Said A. Ghabrial; José R. Castón; Daohong Jiang; Max L. Nibert; Nobuhiro Suzuki

Mycoviruses are widespread in all major taxa of fungi. They are transmitted intracellularly during cell division, sporogenesis, and/or cell-to-cell fusion (hyphal anastomosis), and thus their life cycles generally lack an extracellular phase. Their natural host ranges are limited to individuals within the same or closely related vegetative compatibility groups, although recent advances have established expanded experimental host ranges for some mycoviruses. Most known mycoviruses have dsRNA genomes packaged in isometric particles, but an increasing number of positive- or negative-strand ssRNA and ssDNA viruses have been isolated and characterized. Although many mycoviruses do not have marked effects on their hosts, those that reduce the virulence of their phytopathogenic fungal hosts are of considerable interest for development of novel biocontrol strategies. Mycoviruses that infect endophytic fungi and those that encode killer toxins are also of special interest. Structural analyses of mycoviruses have promoted better understanding of virus assembly, function, and evolution.


Plant Cell Reports | 1996

Production of transgenic soybean lines expressing the bean pod mottle virus coat protein precursor gene

Rong Di; Virginia Purcell; Glenn B. Collins; Said A. Ghabrial

Soybean (Glycine max. Merrill. cv. Fayette) cotyledonary nodes were transformed with bean pod mottle virus (BPMV) coat protein precursor (CP-P) gene via Agrobacterium-mediated transformation. The transformation rate was low, and only five primary transformants derived from five different cotyledons were obtained from 400 original cotyledons. Southern blot hybridization verified the integration of the BPMV CP-P gene. Inheritance and expression of this gene in R1 plants were also demonstrated. About 30% of R2 plants derived from one transgenic line showed complete resistance to BPMV infection, as assessed by symptomatology and ELISA, suggesting that homozygous, but not hemizygous, plants exhibit the resistant phenotype.


Virus Research | 2014

Taxonomic reorganization of family Partitiviridae and other recent progress in partitivirus research.

Max L. Nibert; Said A. Ghabrial; Edgar Maiss; Till Lesker; Eeva J. Vainio; Daohong Jiang; Nobuhiro Suzuki

Phylogenetic analyses have prompted a taxonomic reorganization of family Partitiviridae (encapsidated, bisegmented dsRNA viruses that infect plants, fungi, or protozoa), the focus of this review. After a brief introduction to partitiviruses, the taxonomic changes are discussed, including replacement of former genera Partitivirus, Alphacryptovirus, and Betacryptovirus, with new genera Alphapartitivirus, Betapartitivirus, Gammapartitivirus, and Deltapartitivirus, as well as redistribution of species among these new genera. To round out the review, other recent progress of note in partitivirus research is summarized, including discoveries of novel partitivirus sequences by metagenomic approaches and mining of sequence databases, determinations of fungal partitivirus particle structures, demonstrations of fungal partitivirus transmission to new fungal host species, evidence for other aspects of partitivirus-host interactions and host effects, and identification of other fungal or plant viruses with some similarities to partitiviruses. Some outstanding questions are also discussed.


BMC Evolutionary Biology | 2011

Widespread Horizontal Gene Transfer from Circular Single-stranded DNA Viruses to Eukaryotic Genomes

Huiquan Liu; Yanping Fu; Bo Li; Xiao Yu; Jiatao Xie; Jiasen Cheng; Said A. Ghabrial; Guoqing Li; Xianhong Yi; Daohong Jiang

BackgroundIn addition to vertical transmission, organisms can also acquire genes from other distantly related species or from their extra-chromosomal elements (plasmids and viruses) via horizontal gene transfer (HGT). It has been suggested that phages represent substantial forces in prokaryotic evolution. In eukaryotes, retroviruses, which can integrate into host genome as an obligate step in their replication strategy, comprise approximately 8% of the human genome. Unlike retroviruses, few members of other virus families are known to transfer genes to host genomes.ResultsHere we performed a systematic search for sequences related to circular single-stranded DNA (ssDNA) viruses in publicly available eukaryotic genome databases followed by comprehensive phylogenetic analysis. We conclude that the replication initiation protein (Rep)-related sequences of geminiviruses, nanoviruses and circoviruses have been frequently transferred to a broad range of eukaryotic species, including plants, fungi, animals and protists. Some of the transferred viral genes were conserved and expressed, suggesting that these genes have been coopted to assume cellular functions in the host genomes. We also identified geminivirus-like and parvovirus-like transposable elements in genomes of fungi and lower animals, respectively, and thereby provide direct evidence that eukaryotic transposons could derive from ssDNA viruses.ConclusionsOur discovery extends the host range of circular ssDNA viruses and sheds light on the origin and evolution of these viruses. It also suggests that ssDNA viruses act as an unforeseen source of genetic innovation in their hosts.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Extracellular transmission of a DNA mycovirus and its use as a natural fungicide

Xiao Yu; Bo Li; Yanping Fu; Jiatao Xie; Jiasen Cheng; Said A. Ghabrial; Guoqing Li; Xianhong Yi; Daohong Jiang

Mycoviruses are thought not to be infectious as free particles and to lack an extracellular phase in their life cycles, limiting the broad use of hypovirulence-associated mycoviruses in controlling fungal disease. Here, we demonstrate that purified particles of a DNA mycovirus, Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-1), are infectious when applied extracellularly to its host Sclerotinia sclerotiorum. Virus particles isolated from an infected host can infect the hyphae of virus-free S. sclerotiorum directly when applied to hyphae grown on potato dextrose agar or sprayed on leaves of Arabidopsis thaliana and Brassica napus, regardless of vegetative compatibility affiliation. When applied to leaves, the virus can suppress the development of lesions. SsHADV-1 can also reduce disease severity and enhance rapeseed yield significantly under field conditions. SsHADV-1 has a narrow host range; it can infect Sclerotinia minor and Sclerotinia nivalis, sister species of S. sclerotiorum, and cause debilitation of these two fungi, but cannot infect or transfect other tested fungi, such as Botrytis cinerea, which shares the same family with S. sclerotiorum. Virus particles are likely to be very stable on the leaves of A. thaliana plants because viral DNA could be detected at 15 d postinoculation on unwounded leaves and at 10 d postinoculation on wounded leaves, respectively; however, this virus could not infect and move in plant cells. Our findings may prompt a reconsideration of the generalization that mycoviruses lack an extracellular phase in their life cycles and stimulate the search for other DNA mycoviruses with potential use as natural fungicides.

Collaboration


Dive into the Said A. Ghabrial's collaboration.

Top Co-Authors

Avatar

Daohong Jiang

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiatao Xie

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yanping Fu

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

José R. Castón

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Guoqing Li

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jiasen Cheng

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Luque

Instituto de Salud Carlos III

View shared research outputs
Researchain Logo
Decentralizing Knowledge