Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sailesh Chitrakar is active.

Publication


Featured researches published by Sailesh Chitrakar.


International Journal of Fluid Machinery and Systems | 2014

Fully coupled FSI analysis of Francis turbines exposed to sediment erosion

Sailesh Chitrakar; Michel Cervantes; Biraj Singh Thapa

Sediment erosion is one of the key challenges in hydraulic turbines from a design and maintenanceperspective in Himalayas and Andes. Past research works have shown that the optimization of theFrancis turbine runner blade shapes can decrease erosion by a signicant amount. This study conductedas a Masters Thesis has taken the proposed designs from past works and conducted a CFDanalysis on a single passage of a Francis runner blade to choose an optimized design in terms of erosionand eciency. Structural analyses have been performed on the selected design through one-way andtwo-way FSI to compare the structural integrity of the designs.Two types of cases have been considered in this thesis work to dene the boundary condition of thestructural model. In the rst case, a runner blade is considered to have no in uence of the joint andother stier components. In the second case, a sector of the whole runner has been modeled withnecessary boundary conditions. Both one-way and two-way FSI have been performed on the casesfor the designs. Mesh independent studies have been performed for the designs, but only for the rstcase, whereas in the second case, a ne mesh has been used to make the analysis appropriate.The loads have been imported into the structural domain from the uid on the interfaces for one-wayFSI. In the case of two-way FSI, the Multi-Field Solver (MFX) supported by ANSYS has been usedto solve the coupled eld analysis. A fully coupled FSI in ANSYS works by writing an input le inthe structural solver containing the information about the interfaces in the structural domain, whichis imported in the uid solver. The interaction between the two domains is dened in ANSYS-CFX,including the mesh deformation and solver setups. The results have been post-processed in CFX-Post,where the results from both the elds are included. It has been found that the structural integrity ofthe optimized design is better than the reference design in terms of the maximum stress induced inthe runner. The two-way FSI analysis has been found as an inevitable part of the numerical analysis.However, with the advancement of the computational capability in the future, there could be a greatscope in the research eld to carry out a fully-coupled transient simulation for the whole runner toget a more accurate solution.


Journal of Computational Design and Engineering | 2017

Numerical and experimental study of the leakage flow in guide vanes with different hydrofoils

Sailesh Chitrakar; Biraj Singh Thapa; Ole Gunnar Dahlhaug; Hari Prasad Neopane

Abstract Clearance gaps between guide vanes and cover plates of Francis turbines tend to increase in size due to simultaneous effect of secondary flow and erosion in sediment affected hydropower plants. The pressure difference between the two sides of the guide vane induces leakage flow through the gap. This flow enters into the suction side with high acceleration, disturbing the primary flow and causing more erosion and losses in downstream turbine components. A cascade rig containing a single guide vane passage has been built to study the effect of the clearance gap using pressure sensors and PIV (Particle Image Velocimetry) technique. This study focuses on developing a numerical model of the test rig, validating the results with experiments and investigating the behavior of leakage flow numerically. It was observed from both CFD and experiment that the leakage flow forms a passage vortex, which shifts away from the wall while travelling downstream. The streamlines contributing to the formation of this vortex have been discussed. Furthermore, the reference guide vane with symmetrical hydrofoil has been compared with four cambered profiles, in terms of the guide vane loading and the consequent effect on the leakage flow. A dimensionless term called Leakage Flow Factor ( L ff ) has been introduced to compare the performances of hydrofoils. It is shown that the leakage flow and its effect on increasing losses and erosion can be minimized by changing the pressure distribution over the guide vane.


IOP Conference Series: Earth and Environmental Science | 2016

Numerical investigation of the flow phenomena around a low specific speed Francis turbine's guide vane cascade

Sailesh Chitrakar; Biraj Singh Thapa; Ole Gunnar Dahlhaug; Hari Prasad Neopane

Guide vanes of Francis turbines convey a significant influence on the flow field at the inlet of the runner. This influence is in the form of pressure pulsation, caused due to rotor-stator-interaction. A guide vane cascade containing a single blade passage was developed to predict the flow field experimentally. Firstly, this paper investigates flow phenomena around the guide vane cascade through computational techniques. A numerical model is prepared with three different turbulence models. The velocity distribution obtained from these models are compared with experimental results at two circumferential midspan locations. Secondly, the influence of increasing the clearance gap on the flow is studied. Such gaps are expected to increase when the flow containing eroding particles passes through the turbine. This paper also shows that the pressure difference between the pressure and the suction side of guide vane influences the leakage flow through the gap. Hence, reduction of the pressure gradient will reduce leakages through clearance gaps, hereby condensing the subsequent effect of pressure pulsations and erosion. This study also shows that the effect of the gap is prominent in the near wall regions which are close to the gap, whereas it dissipates gradually towards the midspan.


International Journal of Manufacturing Engineering | 2015

Implementation of Computer Aided Engineering for Francis TurbineDevelopment in Nepal

Ravi Koirala; Sailesh Chitrakar; Amod Panthee; Hari Prasad Neopane; Bhola Thapa

The expansion of the existing industries involved in the production of components of hydropower to the Francis turbine manufacturer up to 5 MW unit size has been recognized as one of the most promising business models in Nepal. Given the current fact that the development of Francis turbines with the manufacturers of Nepal has not been done yet, due to lack of designing expertise and limitations in the available technology, this paper presents the use of different available manufacturing technologies, which is suitable in the Nepalese hydropower market. This is an experience based paper, in which the advanced manufacturing process implementing Computer Aided Simulation (CAS), Computer Aided Design (CAD), and Computer Aided Manufacturing (CAM) is introduced for turbine manufacturing. Moreover, CAD from Solidworks, 3D printing from Rapid Prototyping Machine (RPM), and manufacturing of three designs by three different methods, dye casting, lost wax casting, and forging in a local workshop, have been described. The outcome of this work is the identification of suitable Francis turbine development methodologies in context of Nepal, incorporating industrial revolution through research based products.


International Journal of Fluid Machinery and Systems | 2015

Selection of Optimal Number of Francis Runner Blades for a Sediment Laden Micro Hydropower Plant in Nepal

Binaya Baidar; Sailesh Chitrakar; Ravi Koirala; Hari Prasad Neopane

The present study is conducted to identify a better design and optimal number of Francis runner blades for sediment laden high head micro hydropower site, Tara Khola in the Baglung district of Nepa ...


Journal of Physics: Conference Series | 2018

Performance Comparison of Optimized Designs of Francis Turbines Exposed to Sediment Erosion in various Operating Conditions

K P Shrestha; Sailesh Chitrakar; Bhola Thapa; Ole Gunnar Dahlhaug

Erosion on hydro turbine mostly depends on impingement velocity, angle of impact, concentration, shape, size and distribution of erodent particle and substrate material. In the case of Francis turbines, the sediment particles tend to erode more in the off-designed conditions than at the best efficiency point. Previous studies focused on the optimized runner blade design to reduce erosion at the designed flow. However, the effect of the change in the design on other operating conditions was not studied. This paper demonstrates the performance of optimized Francis turbine exposed to sediment erosion in various operating conditions. Comparative study has been carryout among the five different shapes of runner, different set of guide vane and stay vane angles. The effect of erosion is studied in terms of average erosion density rate on optimized design Francis runner with Lagrangian particle tracking method in CFD analysis. The numerical sensitivity of the results are investigated by comparing two turbulence models. Numerical results are validated from the velocity measurements carried out in the actual turbine. Results show that runner blades are susceptible to more erosion at part load conditions compared to BEP, whereas for the case of guide vanes, more erosion occurs at full load conditions. Out of the five shapes compared, Shape 5 provides an optimum combination of efficiency and erosion on the studied operating conditions.


Engineering Applications of Computational Fluid Mechanics | 2018

Numerical investigation of the effect of leakage flow through erosion-induced clearance gaps of guide vanes on the performance of Francis turbines

Sailesh Chitrakar; Ole Gunnar Dahlhaug; Hari Prasad Neopane

ABSTRACT Abrasive wear in the clearance gap of guide vanes (GVs) increases the gap size, which deteriorates the flow and causes loss of efficiency. This paper investigates the performance of a Francis turbine including erosion-induced clearance gaps on the GVs. The effect of the gap on the performance of the turbine is studied numerically, by using the GV and runner blade passages. The results are compared with an experiment conducted in a single GV rig, developed for the same model. Simulations are performed for GVs with NACA0012, NACA2412 and NACA4412 profiles with each at 11 operating conditions. It is found that the clearance gap induces a leakage flow due to the pressure difference between adjacent sides. The leakage flow mixes with the main flow, forming a vortex filament, which is driven inside the runner. By using an example of a power plant in Nepal affected by sediment erosion, it is found that these vortices containing sediment particles erode the inlet of the runner blade towards hub and shroud. Comparison between the three NACA profiles shows that NACA0012, which is the current shape of GV in the plant, causes a maximum loss due to the leakage flow. The asymmetrical profiles contrarily are found to increase the efficiency of the turbine at all operating conditions. Such profiles are also inferred to have the minimum influence of erosion and pressure pulsations problems at runner inlet. In short, this paper gives an overview of the potential effect of the eroded GV on the turbine’s performance and compares different GV profiles to minimize such effects.


International Journal of Fluid Machinery and Systems | 2017

Computational Design of Bifurcation: A Case Study of Darundi Khola Hydropower Project

Ravi Koirala; Sailesh Chitrakar; Hari Prasad Neopane; Balendra Chhetri; Bhola Thapa

Bifurcation refers to wye division of penstock to divide the flow symmetrically or unsymmetrically into two units of turbine for maintaining economical, technical and geological substrates. Particularly, water shows irrelevant behavior when there is a sudden change in flow direction, which results into the transition of the static and dynamic behavior of the flow. Hence, special care and design considerations are required both hydraulically and structurally. The transition induced losses and extra stresses are major features to be examined. The research on design and analysis of bifurcation is one of the oldest topics related to R&D of hydro-mechanical components for hydropower plants. As far as the earlier approaches are concerned, the hydraulic designs were performed based on graphical data sheet, head loss considerations and the mechanical analysis through simplified beam approach. In this paper, the multi prospect approach for design of Bifurcation, incorporating the modern day’s tools and technology is identified. The hydraulic design of bifurcation is a major function of dynamic characteristics of the flow, which is performed with CFD analysis for minimum losses and better hydraulic performances. Additionally, for the mechanical design, a simplified conventional design method as pre-estimation and Finite Element Method for a relevant result projections were used.


Renewable Energy | 2016

Study of the simultaneous effects of secondary flow and sediment erosion in Francis turbines

Sailesh Chitrakar; Hari Prasad Neopane; Ole Gunnar Dahlhaug


Hydro Nepal: Journal of Water, Energy and Environment | 2015

Analysis of Sediment Samples and Erosion Potential: A Case Study of Upper Tamakoshi Hydroelectric Project

Ravi Koirala; Sailesh Chitrakar; Surya Nath Regmi; Manisha Khadka; Hari Prasad Neopane; Bhola Thapa

Collaboration


Dive into the Sailesh Chitrakar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ole Gunnar Dahlhaug

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge