Saket Joshi
Oregon State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Saket Joshi.
international joint conference on artificial intelligence | 2008
Chenggang Wang; Saket Joshi; Roni Khardon
Markov decision processes capture sequential decision making under uncertainty, where an agent must choose actions so as to optimize long term reward. The paper studies efficient reasoning mechanisms for Relational Markov Decision Processes (RMDP) where world states have an internal relational structure that can be naturally described in terms of objects and relations among them. Two contributions are presented. First, the paper develops First Order Decision Diagrams (FODD), a new compact representation for functions over relational structures, together with a set of operators to combine FODDs, and novel reduction techniques to keep the representation small. Second, the paper shows how FODDs can be used to develop solutions for RMDPs, where reasoning is performed at the abstract level and the resulting optimal policy is independent of domain size (number of objects) or instantiation. In particular, a variant of the value iteration algorithm is developed by using special operations over FODDs, and the algorithm is shown to converge to the optimal policy.
international joint conference on artificial intelligence | 2011
Sriraam Natarajan; Saket Joshi; Prasad Tadepalli; Kristian Kersting; Jude W. Shavlik
Imitation learning refers to the problem of learning how to behave by observing a teacher in action. We consider imitation learning in relational domains, in which there is a varying number of objects and relations among them. In prior work, simple relational policies are learned by viewing imitation learning as supervised learning of a function from states to actions. For propositional worlds, functional gradient methods have been proved to be beneficial. They are simpler to implement than most existing methods, more efficient, more naturally satisfy common constraints on the cost function, and better represent our prior beliefs about the form of the function. Building on recent generalizations of functional gradient boosting to relational representations, we implement a functional gradient boosting approach to imitation learning in relational domains. In particular, given a set of traces from the human teacher, our system learns a policy in the form of a set of relational regression trees that additively approximate the functional gradients. The use of multiple additive trees combined with relational representation allows for learning more expressive policies than what has been done before. We demonstrate the usefulness of our approach in several different domains.
international conference on robotics and automation | 2012
Saket Joshi; Paul W. Schermerhorn; Roni Khardon; Matthias Scheutz
Hybrid reactive-deliberative architectures in robotics combine reactive sub-policies for fast action execution with goal sequencing and deliberation. The need for replanning, however, presents a challenge for reactivity and hinders the potential for guarantees about the plan quality. In this paper, we argue that one can integrate abstract planning provided by symbolic dynamic programming in first order logic into a reactive robotic architecture, and that such an integration is in fact natural and has advantages over traditional approaches. In particular, it allows the integrated system to spend off-line time planning for a policy, and then use the policy reactively in open worlds, in situations with unexpected outcomes, and even in new environments, all by simply reacting to a state change executing a new action proposed by the policy. We demonstrate the viability of the approach by integrating the FODD-Planner with the robotic DIARC architecture showing how an appropriate interface can be defined and that this integration can yield robust goal-based action execution on robots in open worlds.
Journal of Artificial Intelligence Research | 2011
Saket Joshi; Roni Khardon
Dynamic programming algorithms have been successfully applied to propositional stochastic planning problems by using compact representations, in particular algebraic decision diagrams, to capture domain dynamics and value functions. Work on symbolic dynamic programming lifted these ideas to first order logic using several representation schemes. Recent work introduced a first order variant of decision diagrams (FODD) and developed a value iteration algorithm for this representation. This paper develops several improvements to the FODD algorithm that make the approach practical. These include, new reduction operators that decrease the size of the representation, several speedup techniques, and techniques for value approximation. Incorporating these, the paper presents a planning system, FODD-PLANNER, for solving relational stochastic planning problems. The system is evaluated on several domains, including problems from the recent international planning competition, and shows competitive performance with top ranking systems. This is the first demonstration of feasibility of this approach and it shows that abstraction through compact representation is a promising approach to stochastic planning.
Artificial Intelligence | 2011
Saket Joshi; Kristian Kersting; Roni Khardon
Many tasks in AI require representation and manipulation of complex functions. First-Order Decision Diagrams (FODD) are a compact knowledge representation expressing functions over relational structures. They represent numerical functions that, when constrained to the Boolean range, use only existential quantification. Previous work has developed a set of operations for composition and for removing redundancies in FODDs, thus keeping them compact, and showed how to successfully employ FODDs for solving large-scale stochastic planning problems through the formalism of relational Markov decision processes (RMDP). In this paper, we introduce several new ideas enhancing the applicability of FODDs. More specifically, we first introduce Generalized FODDs (GFODD) and composition operations for them, generalizing FODDs to arbitrary quantification. Second, we develop a novel approach for reducing (G)FODDs using model checking. This yields - for the first time - a reduction that maximally reduces the diagram for the FODD case and provides a sound reduction procedure for GFODDs. Finally we show how GFODDs can be used in principle to solve RMDPs with arbitrary quantification, and develop a complete solution for the case where the reward function is specified using an arbitrary number of existential quantifiers followed by an arbitrary number of universal quantifiers.
inductive logic programming | 2013
Sriraam Natarajan; Phillip Odom; Saket Joshi; Tushar Khot; Kristian Kersting; Prasad Tadepalli
The problem of learning to mimic a human expert/teacher from training trajectories is called imitation learning. To make the process of teaching easier in this setting, we propose to employ transfer learning (where one learns on a source problem and transfers the knowledge to potentially more complex target problems). We consider multi-relational environments such as real-time strategy games and use functional-gradient boosting to capture and transfer the models learned in these environments. Our experiments demonstrate that our learner learns a very good initial model from the simple scenario and effectively transfers the knowledge to the more complex scenario thus achieving a jump start, a steeper learning curve and a higher convergence in performance.
european conference on machine learning | 2013
Saket Joshi; Roni Khardon; Prasad Tadepalli; Aswin Raghavan; Alan Fern
We formalize a simple but natural subclass of service domains for relational planning problems with object-centered, independent exogenous events and additive rewards capturing, for example, problems in inventory control. Focusing on this subclass, we present a new symbolic planning algorithm which is the first algorithm that has explicit performance guarantees for relational MDPs with exogenous events. In particular, under some technical conditions, our planning algorithm provides a monotonic lower bound on the optimal value function. To support this algorithm we present novel evaluation and reduction techniques for generalized first order decision diagrams, a knowledge representation for real-valued functions over relational world states. Our planning algorithm uses a set of focus states, which serves as a training set, to simplify and approximate the symbolic solution, and can thus be seen to perform learning for planning. A preliminary experimental evaluation demonstrates the validity of our approach.
international conference on machine learning and applications | 2012
Sriraam Natarajan; Saket Joshi; Baidya Nath Saha; Adam Edwards; Tushar Khot; Elizabeth Moody; Kristian Kersting; Christopher T. Whitlow; Joseph A. Maldjian
Magnetic resonance imaging (MRI) has emerged as an important tool to identify intermediate biomarkers of Alzheimers disease (AD) due to its ability to measure regional changes in the brain that are thought to reflect disease severity and progression. In this paper, we set out a novel pipeline that uses volumetric MRI data collected from different subjects as input and classifies them into one of three classes: AD, mild cognitive impairment (MCI) and cognitively normal (CN). Our pipeline consists of three stages - (1) a segmentation layer where brain MRI data is divided into clinically relevant regions, (2) a classification layer that uses relational learning algorithms to make pair wise predictions between the three classes, and (3) a combination layer that combines the results of the different classes to obtain the final classification. One of the key features of our proposed approach is that it allows for domain experts knowledge to guide the learning in all the layers. We evaluate our pipeline on 397 patients acquired from the Alzheimers Disease Neuroimaging Initiative and demonstrate that it obtains state-of the-art performance with minimal feature engineering.
international conference on automated planning and scheduling | 2010
Saket Joshi; Kristian Kersting; Roni Khardon
national conference on artificial intelligence | 2012
Aswin Raghavan; Saket Joshi; Alan Fern; Prasad Tadepallia; Roni Khardonb