Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Salah E. Abdel-Ghany is active.

Publication


Featured researches published by Salah E. Abdel-Ghany.


Journal of Biological Chemistry | 2008

MicroRNA-mediated Systemic Down-regulation of Copper Protein Expression in Response to Low Copper Availability in Arabidopsis

Salah E. Abdel-Ghany; Marinus Pilon

In plants, copper is an essential micronutrient required for photosynthesis. Two of the most abundant copper proteins, plastocyanin and copper/zinc superoxide dismutase, are found in chloroplasts. Whereas plastocyanin is essential for photo-autotrophic growth, copper/zinc superoxide dismutase is dispensable and in plastids can be replaced by an iron superoxide dismutase when copper is limiting. The down-regulation of copper/zinc superoxide dismutase expression in response to low copper involves a microRNA, miR398. Interestingly, in Arabidopsis and other plants, three additional microRNA families, miR397, miR408, and miR857, are predicted to target the transcripts for the copper protein plantacyanin and members of the laccase copper protein family. We confirmed the predicted targets of miR397, miR408, and miR857 experimentally by cleavage site analysis. To study the spatial expression pattern of these microRNAs and the effect of copper on their expression, we analyzed Arabidopsis grown hydroponically on different copper regimes. On low amounts of copper the plants accumulated miR397, miR408, and miR857. The microRNA expression pattern was negatively correlated with the accumulation of transcripts for plantacyanin and laccases. Furthermore, the expression of other laccases that are not predicted targets for known microRNAs was similarly regulated in response to copper. For some of these laccases, the regulation was disrupted in a microRNA maturation mutant (hen1-1), suggesting the presence of other copper-regulated microRNAs. Thus, in Arabidopsis, microRNA-mediated down-regulation is a general mechanism to regulate nonessential copper proteins. We propose that this mechanism allows plants to save copper for the most essential functions during limited copper supply.


Journal of Biological Chemistry | 2007

Regulation of Copper Homeostasis by Micro-RNA in Arabidopsis

Hiroaki Yamasaki; Salah E. Abdel-Ghany; Christopher M. Cohu; Yoshichika Kobayashi; Toshiharu Shikanai; Marinus Pilon

Major copper proteins in the cytoplasm of plant cells are plastocyanin, copper/zinc superoxide dismutase, and cytochrome c oxidase. Under copper limited conditions, expression of copper/zinc superoxide dismutase is down-regulated and the protein is replaced by iron superoxide dismutase in chloroplasts. We present evidence that a micro-RNA, miR398, mediates this regulation in Arabidopsis thaliana, by directing the degradation of copper/zinc superoxide dismutase mRNA when copper is limited. Sequence analysis indicated that the transcripts encoding cytosolic copper/zinc superoxide dismutase and COX5b-1, a subunit of the mitochondrial cytochrome c oxidase, are also targeted by miR398. This regulation via miR398 takes place in response to changes in a low range of copper levels (0.2-0.5 μm), indicating that miR398 is involved in a response to copper limitation. On the other hand, another major copper protein, plastocyanin, which is involved in photosynthetic electron flow and is essential in higher plants, was not regulated via miR398.We propose that miR398 is a key factor in copper homeostasis in plants and regulates the stability of mRNAs of major copper proteins under copper-limited conditions.


New Phytologist | 2009

Copper homeostasis: Tansley review

Jason L. Burkhead; Kathryn A. Gogolin Reynolds; Salah E. Abdel-Ghany; Christopher M. Cohu; Marinus Pilon

Copper (Cu) is a cofactor in proteins that are involved in electron transfer reactions and is an essential micronutrient for plants. Copper delivery is accomplished by the concerted action of a set of evolutionarily conserved transporters and metallochaperones. As a result of regulation of transporters in the root and the rarity of natural soils with high Cu levels, very few plants in nature will experience Cu in toxic excess in their tissues. However, low Cu bioavailability can limit plant productivity and plants have an interesting response to impending Cu deficiency, which is regulated by an evolutionarily conserved master switch. When Cu supply is insufficient, systems to increase uptake are activated and the available Cu is utilized with economy. A number of Cu-regulated small RNA molecules, the Cu-microRNAs, are used to downregulate Cu proteins that are seemingly not essential. On low Cu, the Cu-microRNAs are upregulated by the master Cu-responsive transcription factor SPL7, which also activates expression of genes involved in Cu assimilation. This regulation allows the most important proteins, which are required for photo-autotrophic growth, to remain active over a wide range of Cu concentrations and this should broaden the range where plants can thrive.


The Plant Cell | 2005

Two P-Type ATPases Are Required for Copper Delivery in Arabidopsis thaliana Chloroplasts

Salah E. Abdel-Ghany; Patricia Müller-Moulé; Krishna K. Niyogi; Marinus Pilon; Toshiharu Shikanai

Copper delivery to the thylakoid lumen protein plastocyanin and the stromal enzyme Cu/Zn superoxide dismutase in chloroplasts is required for photosynthesis and oxidative stress protection. The copper delivery system in chloroplasts was characterized by analyzing the function of copper transporter genes in Arabidopsis thaliana. Two mutant alleles were identified of a previously uncharacterized gene, PAA2 (for P-type ATPase of Arabidopsis), which is required for efficient photosynthetic electron transport. PAA2 encodes a copper-transporting P-type ATPase with sequence similarity to PAA1, which functions in copper transport in chloroplasts. Both proteins localized to the chloroplast, as indicated by fusions to green fluorescent protein. The PAA1 fusions were found in the chloroplast periphery, whereas PAA2 fusions were localized in thylakoid membranes. The phenotypes of paa1 and paa2 mutants indicated that the two transporters have distinct functions: whereas both transporters are required for copper delivery to plastocyanin, copper delivery to the stroma is inhibited only in paa1 but not in paa2. The effects of paa1 and paa2 on superoxide dismutase isoform expression levels suggest that stromal copper levels regulate expression of the nuclear genes IRON SUPEROXIDE DISMUTASE1 and COPPER/ZINC SUPEROXIDE DISMUTASE2. A paa1 paa2 double mutant was seedling-lethal, underscoring the importance of copper to photosynthesis. We propose that PAA1 and PAA2 function sequentially in copper transport over the envelope and thylakoid membrane, respectively.


Current Opinion in Plant Biology | 2009

Essential transition metal homeostasis in plants.

Marinus Pilon; Christopher M. Cohu; Karl Ravet; Salah E. Abdel-Ghany; Frédéric Gaymard

The homeostasis of the essential transition metals copper, iron, manganese and zinc requires balanced activities of transporters that mediate import into the cell, distribution to organelles and export from the cell. Transcriptional control is important for the regulation of cellular homeostasis. In the case of Fe and Cu much progress has been made in uncovering the regulatory networks that mediate homeostasis, and key transcription factors have now been described. A master regulator of Cu homeostasis in Arabidopsis thaliana, AtSPL7, is related to the Chlamydomonas master regulator CCR1, suggesting that the key switch is conserved between the two systems even though different sets of targets are regulated in the two systems.


Plant Physiology | 2002

Characterization of a NifS-Like Chloroplast Protein from Arabidopsis. Implications for Its Role in Sulfur and Selenium Metabolism

Elizabeth A. H. Pilon-Smits; Gulnara F. Garifullina; Salah E. Abdel-Ghany; Shin-ichiro Kato; Hisaaki Mihara; Kerry L. Hale; Jason L. Burkhead; Nobuyoshi Esaki; Tatsuo Kurihara; Marinus Pilon

NifS-like proteins catalyze the formation of elemental sulfur (S) and alanine from cysteine (Cys) or of elemental selenium (Se) and alanine from seleno-Cys. Cys desulfurase activity is required to produce the S of iron (Fe)-S clusters, whereas seleno-Cys lyase activity is needed for the incorporation of Se in selenoproteins. In plants, the chloroplast is the location of (seleno) Cys formation and a location of Fe-S cluster formation. The goal of these studies was to identify and characterize chloroplast NifS-like proteins. Using seleno-Cys as a substrate, it was found that 25% to 30% of the NifS activity in green tissue in Arabidopsis is present in chloroplasts. A cDNA encoding a putative chloroplast NifS-like protein, AtCpNifS, was cloned, and its chloroplast localization was confirmed using immunoblot analysis and in vitro import. AtCpNIFS is expressed in all major tissue types. The protein was expressed in Escherichia coli and purified. The enzyme contains a pyridoxal 5′ phosphate cofactor and is a dimer. It is a type II NifS-like protein, more similar to bacterial seleno-Cys lyases than to Cys desulfurases. The enzyme is active on both seleno-Cys and Cys but has a much higher activity toward the Se substrate. The possible role of AtCpNifS in plastidic Fe-S cluster formation or in Se metabolism is discussed.


Planta | 2003

Overexpression of cystathionine-γ-synthase enhances selenium volatilization in Brassica juncea

Tiffany Van Huysen; Salah E. Abdel-Ghany; Kerry L. Hale; Danika L. LeDuc; Norman Terry; Elizabeth A. H. Pilon-Smits

Selenium (Se) can be assimilated and volatilized via the sulfate assimilation pathway. Cystathionine-γ-synthase (CGS) is thought to catalyze the synthesis of Se-cystathionine from Se-cysteine, the first step in the conversion of Se-cysteine to volatile dimethylselenide. Here the hypothesis was tested that CGS is a rate-limiting enzyme for Se volatilization. Cystathionine-γ-synthase from Arabidopsis thaliana (L.) Heynh. was overexpressed in Indian mustard [Brassica juncea (L.) Czern & Coss], and five transgenic CGS lines with up to 10-fold enhanced CGS levels were compared with wild-type Indian mustard with respect to Se volatilization, tolerance and accumulation. The CGS transgenics showed 2- to 3-fold higher Se volatilization rates than wild-type plants when supplied with selenate or selenite. Transgenic CGS plants contained 20–40% lower shoot Se levels and 50–70% lower root Se levels than the wild type when supplied with selenite. Furthermore, CGS seedlings were more tolerant to selenite than the wild type. There were no differences in Se accumulation or tolerance from selenate, in agreement with the earlier finding that selenate-to-selenite reduction is rate-limiting for selenate tolerance and accumulation. In conclusion, CGS appears to be a rate-limiting enzyme for Se volatilization. Overexpression of CGS offers a promising approach for the creation of plants with enhanced capacity to remove Se from contaminated sites in the form of low-toxic volatile dimethylselenide.


Plant Physiology | 2005

Overexpression of AtCpNifS Enhances Selenium Tolerance and Accumulation in Arabidopsis

Douglas Van Hoewyk; Gulnara F. Garifullina; Ashley R. Ackley; Salah E. Abdel-Ghany; Matthew A. Marcus; Sirine C. Fakra; Keiki Ishiyama; Eri Inoue; Marinus Pilon; Hideki Takahashi; Elizabeth A. H. Pilon-Smits

Selenium (Se) is an essential element for many organisms but is toxic at higher levels. CpNifS is a chloroplastic NifS-like protein in Arabidopsis (Arabidopsis thaliana) that can catalyze the conversion of cysteine into alanine and elemental sulfur (S0) and of selenocysteine into alanine and elemental Se (Se0). We overexpressed CpNifS to investigate the effects on Se metabolism in plants. CpNifS overexpression significantly enhanced selenate tolerance (1.9-fold) and Se accumulation (2.2-fold). CpNifS overexpressors showed significantly reduced Se incorporation into protein, which may explain their higher Se tolerance. Also, sulfur accumulation was enhanced by approximately 30% in CpNifS overexpressors, both on media with and without selenate. Root transcriptome changes in response to selenate mimicked the effects observed under sulfur starvation. There were only a few transcriptome differences between CpNifS-overexpressing plants and wild type, besides the 25- to 40-fold increase in CpNifS levels. Judged from x-ray analysis of near edge spectrum, both CpNifS overexpressors and wild type accumulated mostly selenate (SeVI). In conclusion, overexpression of this plant NifS-like protein had a pronounced effect on plant Se metabolism. The observed enhanced Se accumulation and tolerance of CpNifS overexpressors show promise for use in phytoremediation.


Plant Physiology | 2005

Iron-Sulfur Cluster Biogenesis in Chloroplasts. Involvement of the Scaffold Protein CpIscA

Salah E. Abdel-Ghany; Hong Ye; Gulnara F. Garifullina; Lihong Zhang; Elizabeth A. H. Pilon-Smits; Marinus Pilon

The chloroplast contains many iron (Fe)-sulfur (S) proteins for the processes of photosynthesis and nitrogen and S assimilation. Although isolated chloroplasts are known to be able to synthesize their own Fe-S clusters, the machinery involved is largely unknown. Recently, a cysteine desulfurase was reported in Arabidopsis (Arabidopsis thaliana; AtCpNifS) that likely provides the S for Fe-S clusters. Here, we describe an additional putative component of the plastid Fe-S cluster assembly machinery in Arabidopsis: CpIscA, which has homology to bacterial IscA and SufA proteins that have a scaffold function during Fe-S cluster formation. CpIscA mRNA was shown to be expressed in all tissues tested, with higher expression level in green, photosynthetic tissues. The plastid localization of CpIscA was confirmed by green fluorescent protein fusions, in vitro import, and immunoblotting experiments. CpIscA was cloned and purified after expression in Escherichia coli. Addition of CpIscA significantly enhanced CpNifS-mediated in vitro reconstitution of the 2Fe-2S cluster in apo-ferredoxin. During incubation with CpNifS in a reconstitution mix, CpIscA was shown to acquire a transient Fe-S cluster. The Fe-S cluster could subsequently be transferred by CpIscA to apo-ferredoxin. We propose that the CpIscA protein serves as a scaffold in chloroplast Fe-S cluster assembly.


Journal of Biological Chemistry | 2006

CpSufE Activates the Cysteine Desulfurase CpNifS for Chloroplastic Fe-S Cluster Formation

Hong Ye; Salah E. Abdel-Ghany; Timothy D. Anderson; Elizabeth A. H. Pilon-Smits; Marinus Pilon

CpNifS, a cysteine desulfurase required to supply sulfur for ironsulfur cluster biogenesis in Arabidopsis thaliana chloroplasts, belongs to a class of NifS-like enzymes with low endogenous cysteine desulfurase activity. Its bacterial homologue SufS is stimulated by SufE. Here we characterize the Arabidopsis chloroplast protein CpSufE, which has an N-terminal SufE-like domain and a C-terminal BolA-like domain unique to higher plants. CpSufE is targeted to the chloroplast stroma, indicated by green fluorescent protein localization and immunoblot experiments. Like CpNifS, CpSufE is expressed in all major tissues, with higher expression in green parts. Its expression is light-dependent and regulated at the mRNA level. The addition of purified recombinant CpSufE increased the Vmax for the cysteine desulfurase activity of CpNifS over 40-fold and decreased the KM toward cysteine from 0.1 to 0.043 mm. In contrast, CpSufE addition decreased the affinity of CpNifS for selenocysteine, as indicated by an increase in the KM from 2.9 to 4.17 mm, and decreased the Vmax for selenocysteine lyase activity by 30%. CpSufE forms dynamic complexes with CpNifS, indicated by gel filtration, native PAGE, and affinity chromatography experiments. A mutant of CpSufE in which the single cysteine was changed to serine was not active in stimulating CpNifS, although it did compete with WT CpSufE. The iron-sulfur cluster reconstitution activity of the CpNifS-CpSufE complex toward apoferredoxin was 20-fold higher than that of CpNifS alone. We conclude that CpNifS and CpSufE together form a cysteine desulfurase required for iron-sulfur cluster formation in chloroplasts.

Collaboration


Dive into the Salah E. Abdel-Ghany's collaboration.

Top Co-Authors

Avatar

Marinus Pilon

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong Ye

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lihong Zhang

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas Van Hoewyk

Coastal Carolina University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge