Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Saleem Jahangeer is active.

Publication


Featured researches published by Saleem Jahangeer.


Molecular and Cellular Biology | 2007

Involvement of Sphingosine-1-Phosphate in Glutamate Secretion in Hippocampal Neurons

Taketoshi Kajimoto; Taro Okada; Huan Yu; Sravan K. Goparaju; Saleem Jahangeer; Shun-ichi Nakamura

ABSTRACT Neuronal activity greatly influences the formation and stabilization of synapses. Although receptors for sphingosine-1-phosphate (S1P), a lipid mediator regulating diverse cellular processes, are abundant in the central nervous system, neuron-specific functions of S1P remain largely undefined. Here, we report two novel actions of S1P using primary hippocampal neurons as a model system: (i) as a secretagogue where S1P triggers glutamate secretion and (ii) as an enhancer where S1P potentiates depolarization-evoked glutamate secretion. Sphingosine kinase 1 (SK1), a key enzyme for S1P production, was enriched in functional puncta of hippocampal neurons. Silencing SK1 expression by small interfering RNA as well as SK1 inhibition by dimethylsphingosine resulted in a strong inhibition of depolarization-evoked glutamate secretion. Fluorescence recovery after photobleaching analysis showed translocation of SK1 from cytosol to membranes at the puncta during depolarization, which resulted in subsequent accumulation of S1P within cells. Fluorescent resonance energy transfer analysis demonstrated that the S1P1 receptor at the puncta was activated during depolarization and that depolarization-induced S1P1 receptor activation was inhibited in SK1-knock-down cells. Importantly, exogenously added S1P at a nanomolar concentration by itself elicited glutamate secretion from hippocampal cells even when the Na+-channel was blocked by tetrodotoxin, suggesting that S1P acts on presynaptic membranes. Furthermore, exogenous S1P at a picomolar level potentiated depolarization-evoked secretion in the neurons. These findings indicate that S1P, through its autocrine action, facilitates glutamate secretion in hippocampal neurons both by secretagogue and enhancer actions and may be involved in mechanisms underlying regulation of synaptic transmission.


Journal of Biological Chemistry | 2007

Protein Kinase D-mediated Phosphorylation and Nuclear Export of Sphingosine Kinase 2

Guo Ding; Hirofumi Sonoda; Huan Yu; Taketoshi Kajimoto; Sravan K. Goparaju; Saleem Jahangeer; Taro Okada; Shun-ichi Nakamura

Sphingosine kinase (SPHK) is a key enzyme producing important messenger sphingosine 1-phosphate and is implicated in cell proliferation and suppression of apoptosis. Because the extent of agonist-induced activation of SPHK is modest, signaling via SPHK may be regulated through its localization at specific intracellular sites. Although the SPHK1 isoform has been extensively studied and characterized, the regulation of expression and function of the other isoform, SPHK2, remain largely unexplored. Here we describe an important post-translational modification, namely, phosphorylation of SPHK2 catalyzed by protein kinase D (PKD), which regulates its localization. Upon stimulation of HeLa cells by tumor promoter phorbol 12-myristate 13-acetate, a serine residue in a novel and putative nuclear export signal, identified for the first time, in SPHK2 was phosphorylated followed by SPHK2 export from the nucleus. Constitutively active PKD phosphorylated this serine residue in the nuclear export signal both in vivo and in vitro. Moreover, down-regulation of PKDs through RNA interference resulted in the attenuation of both basal and phorbol 12-myristate 13-acetate-induced phosphorylation, which was followed by the accumulation of SPHK2 in the nucleus in a manner rescued by PKD over-expression. These results indicate that PKD is a physiologically relevant enzyme for SPHK2 phosphorylation, which leads to its nuclear export for subsequent cellular signaling.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2008

Inhalation of sphingosine kinase inhibitor attenuates airway inflammation in asthmatic mouse model

Teruaki Nishiuma; Yoshihiro Nishimura; Taro Okada; Emi Kuramoto; Yoshikazu Kotani; Saleem Jahangeer; Shun-ichi Nakamura

Sphingosine 1-phosphate (S1P) produced by sphingosine kinase (SPHK) is implicated in acute immunoresponses, however, mechanisms of SPHK/S1P signaling in the pathogenesis of bronchial asthma are poorly understood. In this study, we hypothesized that SPHK inhibition could ameliorate lung inflammation in ovalbumin (OVA)-challenged mouse lungs. Six- to eight-week-old C57BL/6J mice were sensitized and exposed to OVA for 3 consecutive days. Twenty-four hours later, mice lungs and bronchoalveolar lavage (BAL) fluid were analyzed. For an inhibitory effect, either of the two different SPHK inhibitors, N,N-dimethylsphingosine (DMS) or SPHK inhibitor [SK-I; 2-(p-hydroxyanilino)-4-(p-chlorophenyl) thiazole], was nebulized for 30 min before OVA inhalation. OVA inhalation caused S1P release into BAL fluid and high expression of SPHK1 around bronchial epithelial walls and inflammatory areas. DMS or SK-I inhalation resulted in a decrease in S1P amounts in BAL fluid to basal levels, accompanied by decreased eosinophil infiltration and peroxidase activity. The extent of inhibition caused by DMS inhalation was higher than that caused by SK-I. Like T helper 2 (Th2) cytokine release, OVA inhalation-induced increase in eotaxin expression was significantly suppressed by DMS pretreatment both at protein level in BAL fluid and at mRNA level in lung homogenates. Moreover, bronchial hyperresponsiveness to inhaled methacholine and goblet cell hyperplasia were improved by SPHK inhibitors. These data suggest that the inhibition of SPHK affected acute eosinophilic inflammation induced in antigen-challenged mouse model and that targeting SPHK may provide a novel therapeutic tool to treat bronchial asthma.


Journal of Biological Chemistry | 2002

Identification and Characterization of RPK118, a Novel Sphingosine Kinase-1-binding Protein

Shun Hayashi; Taro Okada; Nobuaki Igarashi; Toshitada Fujita; Saleem Jahangeer; Shun-ichi Nakamura

Sphingosine kinase (SPHK) is a key enzyme catalyzing the formation of sphingosine 1 phosphate (SPP), a lipid messenger that is implicated in the regulation of a wide variety of important cellular events through intracellular as well as extracellular mechanisms. However, the molecular mechanism of the intracellular actions of SPP remains unclear. Here we have cloned a novel sphingosine kinase-1 (SPHK1)-binding protein, RPK118, by yeast two-hybrid screening. RPK118 contains several functional domains whose sequences are homologous to other known proteins including the phox homology domain and pseudokinase 1 and 2 domains and is shown to be a member of an evolutionarily highly conserved gene family. The pseudokinase 2 domain of RPK118 is responsible for SPHK1 binding as judged by yeast two-hybrid screening and immunoprecipitation studies. RPK118 is also shown to co-localize with SPHK1 on early endosomes in COS7 cells expressing both recombinant proteins. Furthermore, RPK118 specifically binds to phosphatidylinositol 3-phosphate. These results strongly suggest that RPK118 is a novel SPHK1-binding protein that may be involved in transmitting SPP-mediated signaling into the cell.


Neuroscience | 2010

Regulation of synaptic strength by sphingosine 1-phosphate in the hippocampus.

T. Kanno; T. Nishizaki; R.L. Proia; Taketoshi Kajimoto; Saleem Jahangeer; Taro Okada; Shun-ichi Nakamura

Although the hippocampus is a brain region involved in short-term memory, the molecular mechanisms underlying memory formation are not completely understood. Here we show that sphingosine 1-phosphate (S1P) plays a pivotal role in the formation of memory. Addition of S1P to rat hippocampal slices increased the rate of AMPA receptor-mediated miniature excitatory postsynaptic currents (mEPSCs) recorded from the CA3 region of the hippocampus. In addition long-term potentiation (LTP) observed in the CA3 region was potently inhibited by a sphingosine kinase (SphK) inhibitor and this inhibition was fully reversed by S1P. LTP was impaired in hippocampal slices specifically in the CA3 region obtained from SphK1-knockout mice, which correlates well with the poor performance of these animals in the Morris water maze test. These results strongly suggest that SphK/S1P receptor signaling plays an important role in excitatory synaptic transmission in the CA3 region of hippocampus and has profound effects on hippocampal function such as spatial learning.


Biochemical Journal | 2004

δ-Catenin/NPRAP (neural plakophilin-related armadillo repeat protein) interacts with and activates sphingosine kinase 1

Toshitada Fujita; Taro Okada; Shun Hayashi; Saleem Jahangeer; Noriko Miwa; Shun-ichi Nakamura

Sphingosine kinase (SPHK) is a key enzyme catalysing the formation of sphingosine 1-phosphate (SPP), a lipid messenger that is implicated in the regulation of a wide variety of important cellular events acting through intracellular, as well as extracellular, mechanisms. However, the molecular mechanism of intracellular actions of SPP remains unclear. Here, we have identified delta-catenin/NPRAP (neural plakophilin-related armadillo repeat protein) as a potential binding partner for SPHK1 by yeast two-hybrid screening. From co-immunoprecipitation analyses, the C-terminal portion of delta-catenin/NPRAP containing the seventh to tenth armadillo repeats was found to be required for interaction with SPHK1. Endogenous delta-catenin/NPRAP was co-localized with endogenous SPHK1 and transfected delta-catenin/NPRAP was co-localized with transfected SPHK1 in dissociated rat hippocampal neurons. MDCK (Madin-Darby canine kidney) cells stably expressing delta-catenin/NPRAP contained elevated levels of intracellular SPP. In a purified system delta-catenin/NPRAP stimulated SPHK1 in a dose-dependent manner. Furthermore, delta-catenin/NPRAP-induced increased cell motility in MDCK cells was completely inhibited by dimethylsphingosine, a specific inhibitor of SPHK1. These results strongly suggest that at least some of delta-catenin/NPRAP functions, including increased cell motility, are mediated by an SPHK-SPP signalling pathway.


The EMBO Journal | 2009

CtBP1/BARS is an activator of phospholipase D1 necessary for agonist‐induced macropinocytosis

Yuki Haga; Noriko Miwa; Saleem Jahangeer; Taro Okada; Shun-ichi Nakamura

Vesicular trafficking such as macropinocytosis is a dynamic process that requires coordinated interactions between specialized proteins and lipids. A recent report suggests the involvement of CtBP1/BARS in epidermal growth factor (EGF)‐induced macropinocytosis. Detailed mechanisms as to how lipid remodelling is regulated during macropinocytosis are still undefined. Here, we show that CtBP1/BARS is a physiological activator of PLD1 required in agonist‐induced macropinocytosis. EGF‐induced macropinocytosis was specifically blocked by 1‐butanol but not by 2‐butanol. In addition, stimulation of cells by serum or EGF resulted in the association of CtBP1/BARS with PLD1. Finally, CtBP1/BARS activated PLD1 in a synergistic manner with other PLD activators, including ADP‐ribosylation factors as demonstrated by in vitro and intact cell systems. The present results shed light on the molecular basis of how the ‘fission protein’ CtBP1/BARS controls vesicular trafficking events including macropinocytosis.


Journal of Biological Chemistry | 2007

Requirement of phospholipase D for ilimaquinone-induced Golgi membrane fragmentation

Hirofumi Sonoda; Taro Okada; Saleem Jahangeer; Shun-ichi Nakamura

Although organelles such as the endoplasmic reticulum and Golgi apparatus are highly compartmentalized, these organelles are interconnected through a network of vesicular trafficking. The marine sponge metabolite ilimaquinone (IQ) is known to induce Golgi membrane fragmentation and is widely used to study the mechanism of vesicular trafficking. Although IQ treatment causes protein kinase D (PKD) activation, the detailed mechanism of IQ-induced Golgi membrane fragmentation remains unclear. In this work, we found that IQ treatment of cells caused a robust activation of phospholipase D (PLD). In the presence of 1-butanol but not 2-butanol, IQ-induced Golgi membrane fragmentation was completely blocked. In addition, IQ failed to induce Golgi membrane fragmentation in PLD knock-out DT40 cells. Furthermore, IQ-induced PKD activation was completely blocked by treatment with either 1-butanol or propranolol. Notably, IQ-induced Golgi membrane fragmentation was also blocked by propranolol treatment. These results indicate that PLD-catalyzed formation of phosphatidic acid is a prerequisite for IQ-induced Golgi membrane fragmentation and that enzymatic conversion of phosphatidic acid to diacylglycerol is necessary for subsequent activation of PKD and IQ-induced Golgi membrane fragmentation.


Pulmonary Pharmacology & Therapeutics | 2010

Sphingosine kinase 1 regulates mucin production via ERK phosphorylation.

Yuko Kono; Teruaki Nishiuma; Taro Okada; Kazuyuki Kobayashi; Yasuhiro Funada; Yoshikazu Kotani; Saleem Jahangeer; Shun-ichi Nakamura; Yoshihiro Nishimura

Our previous report showed that inhibition of sphingosine kinase (SphK) ameliorates eosinophilic inflammation and mucin production in a mouse asthmatic model. To clarify the role of SphK in airway mucin production, we utilized the mouse asthmatic model and found that both SphK and MUC5AC expression were increased and co-localized in airway epithelium. Next we cultured normal human bronchial epithelial cells in an air-liquid interface and treated with IL-13 to induce their differentiation into goblet cells. We found that SphK1 and MUC5AC expression was increased by IL-13 treatment at both protein and mRNA levels, whereas SphK2 expression was not changed. N,N-dimethylsphingosine (DMS), a potent SphK inhibitor, decreased MUC5AC expression up-regulated by IL-13 treatment. Furthermore, DMS inhibited IL-13-induced ERK1/2 phosphorylation but neither p38 MAPK nor STAT6 phosphorylation. These results suggest that SphK1 is involved in MUC5AC production induced by IL-13 upstream of ERK1/2 phosphorylation, and independent of STAT6 phosphorylation.


Biochemical Journal | 2001

Regulation of mammalian phospholipase D2 : Interaction with and stimulation by G[M2] activator

Sukumar Sarkar; Noriko Miwa; Hiroaki Kominami; Nobuaki Igarashi; Shun Hayashi; Taro Okada; Saleem Jahangeer; Shun-ichi Nakamura

We have previously reported that a heat-stable activator for ganglioside metabolism, G(M2) activator, potently stimulates ADP-ribosylation factor (ARF)-dependent phospholipase D (PLD) activity (presumably PLD1) in an in vitro system [Nakamura, Akisue, Jinnai, Hitomi, Sarkar, Miwa, Okada, Yoshida, Kuroda, Kikkawa and Nishizuka (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 12249-12253]. However, little is known about the regulation of PLD2. In the present studies we have investigated the regulation of PLD2 by G(M2) activator and various other regulators including ARF. PLD2 was potently stimulated in vitro by G(M2) activator in a time- and dose-dependent manner. Neither ARF nor protein kinase C caused any significant changes in PLD2 activity. Importantly, PLD2 responsiveness to ARF was greatly enhanced by G(M2) activator, suggesting a possible role for G(M2) activator as a coupling factor. G(M2) activator was also demonstrated to physically associate with PLD2 in a stoichiometric manner. Further, PMA stimulation of COS-7 cells overexpressing both G(M2) activator and PLD2 resulted in a marked increase in the association of the two molecules. Interestingly, ARF association with PLD2 was greatly increased by G(M2) activator. Moreover, G(M2) activator enhanced PMA-induced PLD activity in a synergistic manner with ARF in streptolysin-O-permeabilized, cytosol-depleted HL-60 cells, suggesting that G(M2) activator may regulate PLD in a concerted manner with other factors, including ARF, inside the cells.

Collaboration


Dive into the Saleem Jahangeer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge