Sally A. Power
University of Sydney
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sally A. Power.
Environmental Pollution | 2009
Sarah L. Honour; J. Nigel B. Bell; Trevor W. Ashenden; J. Neil Cape; Sally A. Power
Vehicle exhaust emissions are a dominant feature of urban environments and are widely believed to have detrimental effects on plants. The effects of diesel exhaust emissions on 12 herbaceous species were studied with respect to growth, flower development, leaf senescence and leaf surface wax characteristics. A diesel generator was used to produce concentrations of nitrogen oxides (NO(x)) representative of urban conditions, in solardome chambers. Annual mean NO(x) concentrations ranged from 77 nl l(-l) to 98 nl l(-1), with NO:NO(2) ratios of 1.4-2.2, providing a good experimental simulation of polluted roadside environments. Pollutant exposure resulted in species-specific changes in growth and phenology, with a consistent trend for accelerated senescence and delayed flowering. Leaf surface characteristics were also affected; contact angle measurements indicated changes in surface wax structure following pollutant exposure. The study demonstrated clearly the potential for realistic levels of vehicle exhaust pollution to have direct adverse effects on urban vegetation.
Environmental Pollution | 1998
Sally A. Power; M. R. Ashmore; D. A. Cousins
Between 1989 and 1996, nitrogen, in the form of (NH4)2SO4 (7.7 or 15.4 kg ha−1 year−1), was added to experimental plots of Calluna at a lowland dry heath in the south of England. Background deposition at this site was estimated at between 13–18 kg N ha−1 year−1, with experimental additions therefore taking total deposition slightly above the proposed critical nitrogen load for lowland heaths. A destructive harvest, carried out in December 1996, revealed large increases in above-ground growth and litter production in response to nitrogen treatments. Plant, litter and soil nitrogen concentrations were also significantly increased. Higher levels of soil decomposer activity, together with faster turnover of litter in nitrogen-treated plots suggest an effect of treatment additions on rates of internal nitrogen cycling. A nitrogen budget for the site revealed that only a relatively small proportion (14–18%) of the nitrogen additions had been accumulated in plant biomass. A similarly small proportion (10–15%) of the extra nitrogen was stored in the litter layer. Since leaching and denitrification losses were minimal, the bulk of the experimental additions were therefore accumulated within the soil compartment. Although no changes in species composition were seen during this experiment, effects on internal nutrient cycling and soil nitrogen status could be expected to have an impact on the outcome of competition between regenerating Calluna and grass seedlings. The results indicate that use of the standard management practice at this site, involving cutting and removal of only above-ground plant material, whilst essential for the maintenance of a mixed-age Calluna sward, will have only a relatively small impact on nitrogen accumulation within this system. The importance of management in modifying the impact of enhanced nitrogen deposition is discussed in the context of critical loads for healthland systems in the UK.
Philosophical Transactions of the Royal Society B | 2010
Mark A. Lee; Peter Manning; Janna Rist; Sally A. Power; Charles Marsh
Grassland ecosystems cover vast areas of the Earths surface and provide many ecosystem services including carbon (C) storage, biodiversity preservation and the production of livestock forage. Predicting the future delivery of these services is difficult, because widespread changes in atmospheric CO2 concentration, climate and nitrogen (N) inputs are expected. We compiled published data from global change driver manipulation experiments and combined these with climate data to assess grassland biomass responses to CO2 and N enrichment across a range of climates. CO2 and N enrichment generally increased aboveground biomass (AGB) but effects of CO2 enrichment were weaker than those of N. The response to N was also dependent on the amount of N added and rainfall, with a greater response in high precipitation regions. No relationship between response to CO2 and climate was detected within our dataset, thus suggesting that other site characteristics, e.g. soils and plant community composition, are more important regulators of grassland responses to CO2. A statistical model of AGB response to N was used in conjunction with projected N deposition data to estimate changes to future biomass stocks. This highlighted several potential hotspots (e.g. in some regions of China and India) of grassland AGB gain. Possible benefits for C sequestration and forage production in these regions may be offset by declines in plant biodiversity caused by these biomass gains, thus necessitating careful management if ecosystem service delivery is to be maximized. An approach such as ours, in which meta-analysis is combined with global scale model outputs to make large-scale predictions, may complement the results of dynamic global vegetation models, thus allowing us to form better predictions of biosphere responses to environmental change.
Ecosystems | 2014
C. Field; Nancy B. Dise; Richard J. Payne; Andrea J. Britton; Bridget A. Emmett; Rachel Helliwell; Steve Hughes; Laurence Jones; Steven Lees; Jonathan R. Leake; Ian D. Leith; Gareth K. Phoenix; Sally A. Power; Lucy J. Sheppard; Georgina E. Southon; Carly J. Stevens; Simon J.M. Caporn
Experimental studies have shown that deposition of reactive nitrogen is an important driver of plant community change, however, most of these experiments are of short duration with unrealistic treatments, and conducted in regions with elevated ambient deposition. Studies of spatial gradients of pollution can complement experimental data and indicate whether the potential impacts demonstrated by experiments are actually occurring in the ‘real world’. However, targeted surveys exist for only a very few habitats and are not readily comparable. In a coordinated campaign, we determined the species richness and plant community composition of five widespread, semi-natural habitats across Great Britain in sites stratified along gradients of climate and pollution, and related these ecological parameters to major drivers of biodiversity, including climate, pollution deposition, and local edaphic factors. In every habitat, we found reduced species richness and changed species composition associated with higher nitrogen deposition, with remarkable consistency in relative species loss across ecosystem types. Whereas the diversity of mosses, lichens, forbs, and graminoids declines with N deposition in different habitats, the cover of graminoids generally increases. Considered alongside previous experimental studies and survey work, our results provide a compelling argument that nitrogen deposition is a widespread and pervasive threat to terrestrial ecosystems.
Environmental Pollution | 2011
Linda Davies; J.N.B. Bell; James Bone; M.K. Head; L. Hill; C. Howard; S. J. Hobbs; D. T. Jones; Sally A. Power; Neil L. Rose; Claire L. Ryder; L. Seed; G. Stevens; Ralf Toumi; Nikolaos Voulvoulis; P. C. L. White
OPAL is an English national programme that takes scientists into the community to investigate environmental issues. Biological monitoring plays a pivotal role covering topics of: i) soil and earthworms; ii) air, lichens and tar spot on sycamore; iii) water and aquatic invertebrates; iv) biodiversity and hedgerows; v) climate, clouds and thermal comfort. Each survey has been developed by an inter-disciplinary team and tested by voluntary, statutory and community sectors. Data are submitted via the web and instantly mapped. Preliminary results are presented, together with a discussion on data quality and uncertainty. Communities also investigate local pollution issues, ranging from nitrogen deposition on heathlands to traffic emissions on roadside vegetation. Over 200,000 people have participated so far, including over 1000 schools and 1000 voluntary groups. Benefits include a substantial, growing database on biodiversity and habitat condition, much from previously unsampled sites particularly in urban areas, and a more engaged public.
PLOS ONE | 2013
Ellen L. Fry; Peter Manning; David G. P. Allen; Alex Hurst; Georg Everwand; Martin Rimmler; Sally A. Power
Temperate grassland ecosystems face a future of precipitation change, which can alter community composition and ecosystem functions through reduced soil moisture and waterlogging. There is evidence that functionally diverse plant communities contain a wider range of water use and resource capture strategies, resulting in greater resistance of ecosystem function to precipitation change. To investigate this interaction between composition and precipitation change we performed a field experiment for three years in successional grassland in southern England. This consisted of two treatments. The first, precipitation change, simulated end of century predictions, and consisted of a summer drought phase alongside winter rainfall addition. The second, functional group identity, divided the plant community into three groups based on their functional traits- broadly described as perennials, caespitose grasses and annuals- and removed these groups in a factorial design. Ecosystem functions related to C, N and water cycling were measured regularly. Effects of functional groupidentity were apparent, with the dominant trend being that process rates were higher under control conditions where a range of perennial species were present. E.g. litter decomposition rates were significantly higher in plots containing several perennial species, the group with the highest average leaf N content. Process rates were also very strongly affected by the precipitation change treatmentwhen perennial plant species were dominant, but not where the community contained a high abundance of annual species and caespitose grasses. This contrasting response could be attributable to differing rooting patterns (shallower structures under annual plants, and deeper roots under perennials) and faster nutrient uptake in annuals compared to perennials. Our results indicate that precipitation change will have a smaller effect on key process rates in grasslandscontaining a range of perennial and annual species, and that maintaining the presence of key functional groups should be a crucial consideration in future grassland management.
Plant and Soil | 2003
C.-G. Kim; J.N.B. Bell; Sally A. Power
The effects of Cd on the growth and distribution of Cd and mineral nutrients within plant tissues were investigated for Pinus sylvestris L. seedlings grown in mineral forest soil with increasing levels of Cd addition (0–100 mg kg−1). Approximately 20% of added Cd was found to be extractable from sandy loam forest soil. Root growth was less affected by Cd than shoot growth, which showed a significant reduction in the 100 mg Cd kg−1 treatment. Cadmium accumulated in roots up to 325 mg kg−1. Decreased concentrations of K in needles and Ca in stems with increasing Cd levels suggest a disturbance of mineral nutrition as a result of Cd addition.
PLOS ONE | 2013
Georgina E. Southon; C. Field; Simon J.M. Caporn; Andrea J. Britton; Sally A. Power
Findings from nitrogen (N) manipulation studies have provided strong evidence of the detrimental impacts of elevated N deposition on the structure and functioning of heathland ecosystems. Few studies, however, have sought to establish whether experimentally observed responses are also apparent under natural, field conditions. This paper presents the findings of a nationwide field-scale evaluation of British heathlands, across broad geographical, climatic and pollution gradients. Fifty two heathlands were selected across an N deposition gradient of 5.9 to 32.4 kg ha−1 yr−1. The diversity and abundance of higher and lower plants and a suite of biogeochemical measures were evaluated in relation to climate and N deposition indices. Plant species richness declined with increasing temperature and N deposition, and the abundance of nitrophilous species increased with increasing N. Relationships were broadly similar between upland and lowland sites, with the biggest reductions in species number associated with increasing N inputs at the low end of the deposition range. Both oxidised and reduced forms of N were associated with species declines, although reduced N appears to be a stronger driver of species loss at the functional group level. Plant and soil biochemical indices were related to temperature, rainfall and N deposition. Litter C:N ratios and enzyme (phenol-oxidase and phosphomonoesterase) activities had the strongest relationships with site N inputs and appear to represent reliable field indicators of N deposition. This study provides strong, field-scale evidence of links between N deposition - in both oxidised and reduced forms - and widespread changes in the composition, diversity and functioning of British heathlands. The similarity of relationships between upland and lowland environments, across broad spatial and climatic gradients, highlights the ubiquity of relationships with N, and suggests that N deposition is contributing to biodiversity loss and changes in ecosystem functioning across European heathlands.
Trends in Ecology and Evolution | 2010
Jonathan Silvertown; J. Tallowin; Carly J. Stevens; Sally A. Power; Vicky Morgan; Bridget A. Emmett; Alison J. Hester; J. Philip Grime; Michael D. Morecroft; Robin Buxton; P. R. Poulton; Richard Jinks; Richard D. Bardgett
Long-term ecological observation affords a picture of the past that uniquely informs our understanding of present and future ecological communities and processes. Without a long-term perspective, our vision is prone to environmental myopia. Long-term experiments (LTEs) in particular can reveal the mechanisms that underlie change in communities and ecosystem functioning in a way that cannot be understood by long-term monitoring alone. Despite the urgent need to know more about how climate change will affect ecosystems and their functioning, the continued existence of LTEs is extremely precarious and we believe that dedicated funds are needed to support them. A new non-profit organization called the Ecological Continuity Trust seeks to provide a solution to this problem by establishing an endowment that will be specifically earmarked to sustain LTEs as a scientific tool for the benefit of future generations.
Water Air and Soil Pollution | 1995
Sally A. Power; M. R. Ashmore; D. A. Cousins; N. Ainsworth
Experimental additions of ammonium sulphate to a nitrogen-poor dry heathland have been carried out since 1989. There are four nitrogen treatments: a control (receiving artificial rain only), a low treatment which receives an additional 7.7 kg N ha−1 yr−1, a high treatment receiving 15.4 kg N ha−1 yr−1 and an alternating treatment which receives either the control or the high nitrogen additions, in alternate years. The estimated background deposition at the study site is 13–18 kg N ha−1 yr−1, a value similar to the critical load that has been suggested for the conversion of lowland heath to grassland. Over the past 5 years there have been significant stimulations in shoot growth, flowering, canopy density and litter production. Flowering, in particular, strongly reflects nitrogen additions in the alternating treatment.Current models of the response of dry Calluna heathlaud to enhanced nitrogen deposition suggest that higher tissue nitrogen levels will occur and will be accompanied by heightened sensitivity to secondary stresses. This may in turn lead to canopy breakdown and replacement by grassland. The application of nitrogen at deposition rates only slightly in excess of the critical load over five years has produced small, non-significant increases in shoot nitrogen content. However, there is clear evidence of a large positive effect on shoot growth, flowering, litter production and canopy density of Calluna. The observation of these responses at the application rates used in this study supports the current proposals for critical loads of nitrogen for lowland heaths.