Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sally James is active.

Publication


Featured researches published by Sally James.


Journal of Bacteriology | 2003

Cell Death in Pseudomonas aeruginosa Biofilm Development

Jeremy S. Webb; Lyndal Thompson; Sally James; Tim Charlton; Tim Tolker-Nielsen; Birgit Koch; Michael Givskov; Staffan Kjelleberg

Bacteria growing in biofilms often develop multicellular, three-dimensional structures known as microcolonies. Complex differentiation within biofilms of Pseudomonas aeruginosa occurs, leading to the creation of voids inside microcolonies and to the dispersal of cells from within these voids. However, key developmental processes regulating these events are poorly understood. A normal component of multicellular development is cell death. Here we report that a repeatable pattern of cell death and lysis occurs in biofilms of P. aeruginosa during the normal course of development. Cell death occurred with temporal and spatial organization within biofilms, inside microcolonies, when the biofilms were allowed to develop in continuous-culture flow cells. A subpopulation of viable cells was always observed in these regions. During the onset of biofilm killing and during biofilm development thereafter, a bacteriophage capable of superinfecting and lysing the P. aeruginosa parent strain was detected in the fluid effluent from the biofilm. The bacteriophage implicated in biofilm killing was closely related to the filamentous phage Pf1 and existed as a prophage within the genome of P. aeruginosa. We propose that prophage-mediated cell death is an important mechanism of differentiation inside microcolonies that facilitates dispersal of a subpopulation of surviving cells.


International Journal of Systematic and Evolutionary Microbiology | 1998

Pseudoalteromonas tunicata sp. nov., a bacterium that produces antifouling agents

Carola Holmström; Sally James; Brett A. Neilan; David C. White; Staffan Kjelleberg

A dark-green-pigmented marine bacterium, previously designated D2, which produces components that are inhibitory to common marine fouling organisms has been characterized and assessed for taxonomic assignment. Based on direct double-stranded sequencing of the 16S rRNA gene, D2T was found to show the highest similarity (93%) to members of the genus Pseudoalteromonas. The G + C content of D2T is 42 mol%, and it is a facultatively anaerobic rod and oxidase-positive. D2T is motile by a sheathed polar flagellum, exhibited non-fermentative metabolism and required sodium ions for growth. The strain was not capable of using citrate, fructose, sucrose, sorbitol and glycerol but it utilizes mannose and maltose and hydrolyses gelatin. The molecular evidence, together with phenotypic characteristics, showed that this bacterium which produces an antifouling agent constitutes a new species of the genus Pseudoalteromonas. The name Pseudoalteromonas tunicata is proposed for this bacterium, and the type strain is D2T (= CCUG 26757T).


Applied and Environmental Microbiology | 2004

Biofilm development and cell death in the marine bacterium Pseudoalteromonas tunicata.

Anne Mai-Prochnow; Flavia F. Evans; Doralyn Dalisay-Saludes; Sacha Stelzer; Suhelen Egan; Sally James; Jeremy S. Webb; Staffan Kjelleberg

ABSTRACT The newly described green-pigmented bacterium Pseudoalteromonas tunicata (D2) produces target-specific inhibitory compounds against bacteria, algae, fungi, and invertebrate larvae and is frequently found in association with living surfaces in the marine environment. As part of our studies on the ecology of P. tunicata and its interaction with marine surfaces, we examined the ability of P. tunicata to form biofilms under continuous culture conditions within the laboratory. P. tunicata biofilms exhibited a characteristic architecture consisting of differentiated microcolonies surrounded by water channels. Remarkably, we observed a repeatable pattern of cell death during biofilm development of P. tunicata, similar to that recently reported for biofilms of Pseudomonas aeruginosa (J. S. Webb et al., J. Bacteriol. 185:4585-4595, 2003). Killing and lysis occurred inside microcolonies, apparently resulting in the formation of voids within these structures. A subpopulation of viable cells was always observed within the regions of killing in the biofilm. Moreover, extensive killing in mature biofilms appeared to result in detachment of the biofilm from the substratum. A novel 190-kDa autotoxic protein produced by P. tunicata, designated AlpP, was found to be involved in this biofilm killing and detachment. A ΔalpP mutant derivative of P. tunicata was generated, and this mutant did not show cell death during biofilm development. We propose that AlpP-mediated cell death plays an important role in the multicellular biofilm development of P. tunicata and subsequent dispersal of surviving cells within the marine environment.


Biofouling | 1996

Inhibition of common fouling organisms by marine bacterial isolates ith special reference to the role of pigmented bacteria

Carola Holmström; Sally James; Suhelen Egan; Staffan Kjelleberg

Two questions of relevance to the establishment of marine biofouling communities were addressed, viz (1) what is the frequency with which bacterial strains isolated from living and inanimate surfaces in the marine environment show inhibitory activity against the settlement of common fouling organisms, and (2) is the antifouling bacterium, D2, an inhabitant of different marine waters, and how unique is this bacterium, in its mode of action against different target organisms? With respect to the first question, ninety three marine bacteria isolated from various rock surfaces from the marine environment were tested against larvae of Balanus amphitrite and spores of Ulva lactuca. Settlement assays against the diatom Amphora sp. were also performed on 10 of these strains. Nine bacterial isolates were shown to be inhibitory against larval settlement and eight of these strains were also inhibitory against algal spores. Altogether 16 strains were inhibitory against the settlement of algal spores while none of the bacterial strains inhibited diatom settlement. With respect to the second question, D2, a dark green pigmented bacterium, isolated from an adult tunicate off the Swedish west coast, has been found to be a very effective inhibitor against common fouling organisms. In order to see if this bacterium can be found in other marine waters, bacteria from living surfaces of marine plants and animals from waters around Sydney, Australia, were isolated and screened for inhibitory activity against barnacle larvae. Seventy four percent of the 23 plant isolates were shown to be inhibitory against larval settlement while only 30% of the 23 isolates from marine animals reduced settlement. Twenty two of the isolates from different seaweeds were dark pigmented and 20 of these strains inhibited settlement of barnacle larvae and algal spores. Three of the strains showed the same phenotypic expression as D2, and the results indicate that these strains may be D2 or closely related strains, suggesting that D2 may be a common inhabitant in the marine environment.


Applied and Environmental Microbiology | 2002

Identification and characterization of a putative transcriptional regulator controlling the expression of fouling inhibitors in Pseudoalteromonas tunicata.

Suhelen Egan; Sally James; Staffan Kjelleberg

ABSTRACT The dark green pigmented marine bacterium Pseudoalteromonas tunicata colonizes living surfaces and produces a range of extracellular compounds that inhibit common fouling organisms, including marine invertebrate larvae, algae, bacteria, and fungi. We have observed a positive correlation between the antifouling activity of P. tunicata strain D2 and the expression of pigmentation. To address the hypothesis that pigmentation and antifouling may be jointly regulated in this organism and to begin to identify potential regulatory elements, we used transposon mutagenesis to generate a strain of P. tunicata deficient in antifouling activity. The data presented here describe the phenotypic and molecular characterization of a nonpigmented transposon mutant strain of P. tunicata (D2W2). Analyses of the antifouling capabilities of D2W2 demonstrate that this strain is deficient in the ability to inhibit each of the target fouling organisms. Genetic analysis of D2W2 identified a gene, designated wmpR (white mutant phenotype), with high sequence similarity to transcriptional regulators ToxR from Vibrio cholerae and CadC from Escherichia coli. Two-dimensional polyacrylamide gel electrophoresis analysis revealed that WmpR is essential for the expression of a significant subset of stationary-phase-induced proteins likely to be important for the synthesis of fouling inhibitors. The identification of a gene involved in the regulation of expression of antifouling phenotypes will contribute to the understanding of the interactions between bacteria and other surface-colonizing organisms in the marine environment.


Journal of Molecular Microbiology and Biotechnology | 2003

The Role of Regulators in the Expression of Quorum-Sensing Signals in Pseudomonas aeruginosa

Magnus Fagerlind; Scott A. Rice; Patric Nilsson; Mikael Harlén; Sally James; Timothy S. Charlton; Staffan Kjelleberg

Quorum-sensing systems provide Pseudomonas aeruginosa with a sensitive regulatory mechanism that allows for the induction of several phenotypic genes in a cell density fashion. In this work, a mathematical model of the acylated homoserine lactones regulatory network system in P. aeruginosa has been developed. It is the first integrated model to consider both quorum-sensing systems. The model has allowed us to disentangle the complex behavior exhibited by the system as the concentration of extracellular OdDHL is increased. At either low or high levels of extracellular OdDHL, the bacterium remains in an uninduced or induced state, respectively. At moderate levels, the behavior is characterized by several states. Here, the bacteria can switch suddenly from an uninduced to an induced phenotype in response to small changes in the concentration of extracellular OdDHL. Additionally, we have been able to address the roles of RsaL and Vfr as regulators of the quorum-sensing system. An important result from this analysis suggests that RsaL will increase the concentration of extracellular OdDHL required to induce the system, and it is a key regulator of the inhibition of the quorum-sensing system under low cell densities. Most importantly, our results suggest that Vfr has strong regulatory effects on the system as an increased affinity between the LasR/OdDHL complex, and the lasR promoter leads to significant qualitative changes in induction patterns. We also show experimental data that demonstrate that Vfr is required for signal production in the early phase of growth, but that in the latter stages of growth, the vfr mutant is able to synthesize wild-type levels of signal.


Applied and Environmental Microbiology | 2006

Inhibition of Fungal Colonization by Pseudoalteromonas tunicata Provides a Competitive Advantage during Surface Colonization

Ashley E. Franks; Suhelen Egan; Carola Holmström; Sally James; H. Lappin-Scott; Staffan Kjelleberg

ABSTRACT The marine epiphytic bacterium Pseudoalteromonas tunicata produces a range of extracellular secondary metabolites that inhibit an array of common fouling organisms, including fungi. In this study, we test the hypothesis that the ability to inhibit fungi provides P. tunicata with an advantage during colonization of a surface. Studies on a transposon-generated antifungal-deficient mutant of P. tunicata, FM3, indicated that a long-chain fatty acid-coenzyme A ligase is involved in the production of a broad-range antifungal compound by P. tunicata. Flow cell experiments demonstrated that production of an antifungal compound provided P. tunicata with a competitive advantage against a marine yeast isolate during surface colonization. This compound enabled P. tunicata to disrupt an already established fungal biofilm by decreasing the number of yeast cells attached to the surface by 66% ± 9%. For in vivo experiments, the wild-type and FM3 strains of P. tunicata were used to inoculate the surface of the green alga Ulva australis. Double-gradient denaturing gradient gel electrophoresis analysis revealed that after 48 h, the wild-type P. tunicata had outcompeted the surface-associated fungal community, whereas the antifungal-deficient mutant had no effect on the fungal community. Our data suggest that P. tunicata is an effective competitor against fungal surface communities in the marine environment.


Applied and Environmental Microbiology | 1996

Purification and characterization of a novel antibacterial protein from the marine bacterium D2.

Sally James; Carola Holmström; Staffan Kjelleberg


FEMS Microbiology Ecology | 2001

Inhibition of algal spore germination by the marine bacterium Pseudoalteromonas tunicata

Suhelen Egan; Sally James; Carola Holmström; Staffan Kjelleberg


Environmental Microbiology | 2002

Correlation between pigmentation and antifouling compounds produced by Pseudoalteromonas tunicata.

Suhelen Egan; Sally James; Carola Holmström; Staffan Kjelleberg

Collaboration


Dive into the Sally James's collaboration.

Top Co-Authors

Avatar

Staffan Kjelleberg

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Carola Holmström

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Suhelen Egan

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Jeremy S. Webb

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Mai-Prochnow

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge