Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suhelen Egan is active.

Publication


Featured researches published by Suhelen Egan.


Proceedings of the National Academy of Sciences of the United States of America | 2009

The genomic basis of trophic strategy in marine bacteria

Federico M. Lauro; Diane McDougald; Torsten Thomas; Timothy J. Williams; Suhelen Egan; Scott A. Rice; Matthew Z. DeMaere; Lily Ting; Haluk Ertan; Justin Johnson; Steven Ferriera; Alla Lapidus; Iain Anderson; Nikos C. Kyrpides; A. Christine Munk; Chris Detter; Cliff Han; Mark V. Brown; Frank T. Robb; Staffan Kjelleberg; Ricardo Cavicchioli

Many marine bacteria have evolved to grow optimally at either high (copiotrophic) or low (oligotrophic) nutrient concentrations, enabling different species to colonize distinct trophic habitats in the oceans. Here, we compare the genome sequences of two bacteria, Photobacterium angustum S14 and Sphingopyxis alaskensis RB2256, that serve as useful model organisms for copiotrophic and oligotrophic modes of life and specifically relate the genomic features to trophic strategy for these organisms and define their molecular mechanisms of adaptation. We developed a model for predicting trophic lifestyle from genome sequence data and tested >400,000 proteins representing >500 million nucleotides of sequence data from 126 genome sequences with metagenome data of whole environmental samples. When applied to available oceanic metagenome data (e.g., the Global Ocean Survey data) the model demonstrated that oligotrophs, and not the more readily isolatable copiotrophs, dominate the oceans free-living microbial populations. Using our model, it is now possible to define the types of bacteria that specific ocean niches are capable of sustaining.


FEMS Microbiology Ecology | 2002

Antifouling activities expressed by marine surface associated Pseudoalteromonas species

Carola Holmström; Suhelen Egan; Ashley E. Franks; Sophie McCloy; Staffan Kjelleberg

Abstract Members of the marine bacterial genus Pseudoalteromonas have been found in association with living surfaces and are suggested to produce bioactive compounds against settlement of algal spores, invertebrate larvae, bacteria and fungi. To determine the extent by which these antifouling activities and the production of bioactive compounds are distributed amongst the members of the genus Pseudoalteromonas, 10 different Pseudoalteromonas species mostly derived from different host organisms were tested in a broad range of biofouling bioassays. These assays included the settlement of larvae of two ubiquitous invertebrates Hydroides elegans and Balanus amphitrite as well as the settlement of spores of the common fouling algae Ulva lactuca and Polysiphonia sp. The growth of bacteria and fungi, which are the initial fouling organisms on marine surfaces, was also assayed in the presence of each of the 10 Pseudoalteromonas species. It was found that most members of this genus produced a variety of bioactive compounds. The broadest range of inhibitory activities was expressed by Pseudoalteromonas tunicata which inhibited all target fouling organisms. Only two species, Pseudoalteromonas haloplanktis and Pseudoalteromonas nigrifaciens, displayed negligible activity in the bioassays. These were also the only two non-pigmented species tested in this study which indicates a correlation between production of bioactive compounds and expression of pigment. Three members, P. tunicata, Pseudoalteromonas citrea and Pseudoalteromonas rubra, were demonstrated to express autoinhibitory activity. It is suggested that most Pseudoalteromonas species are efficient producers of antifouling agents and that the production of inhibitory compounds by surface associated Pseudoalteromonas species may aid the host against colonisation of its surface.


The ISME Journal | 2010

Functional genomic signatures of sponge bacteria reveal unique and shared features of symbiosis

Torsten Thomas; Doug Rusch; Matt Z DeMaere; Pui Yi Yung; Matthew Lewis; Aaron L. Halpern; Karla B. Heidelberg; Suhelen Egan; Peter D. Steinberg; Staffan Kjelleberg

Sponges form close relationships with bacteria, and a remarkable phylogenetic diversity of yet-uncultured bacteria has been identified from sponges using molecular methods. In this study, we use a comparative metagenomic analysis of the bacterial community in the model sponge Cymbastela concentrica and in the surrounding seawater to identify previously unrecognized genomic signatures and functions for sponge bacteria. We observed a surprisingly large number of transposable insertion elements, a feature also observed in other symbiotic bacteria, as well as a set of predicted mechanisms that may defend the sponge community against the introduction of foreign DNA and hence contribute to its genetic resilience. Moreover, several shared metabolic interactions between bacteria and host include vitamin production, nutrient transport and utilization, and redox sensing and response. Finally, an abundance of protein–protein interactions mediated through ankyrin and tetratricopeptide repeat proteins could represent a mechanism for the sponge to discriminate between food and resident bacteria. These data provide new insight into the evolution of symbiotic diversity, microbial metabolism and host–microbe interactions in sponges.


Marine Drugs | 2010

Development of Novel Drugs from Marine Surface Associated Microorganisms

Anahit Penesyan; Staffan Kjelleberg; Suhelen Egan

While the oceans cover more than 70% of the Earth’s surface, marine derived microbial natural products have been largely unexplored. The marine environment is a habitat for many unique microorganisms, which produce biologically active compounds (“bioactives”) to adapt to particular environmental conditions. For example, marine surface associated microorganisms have proven to be a rich source for novel bioactives because of the necessity to evolve allelochemicals capable of protecting the producer from the fierce competition that exists between microorganisms on the surfaces of marine eukaryotes. Chemically driven interactions are also important for the establishment of cross-relationships between microbes and their eukaryotic hosts, in which organisms producing antimicrobial compounds (“antimicrobials”), may protect the host surface against over colonisation in return for a nutrient rich environment. As is the case for bioactive discovery in general, progress in the detection and characterization of marine microbial bioactives has been limited by a number of obstacles, such as unsuitable culture conditions, laborious purification processes, and a lack of de-replication. However many of these limitations are now being overcome due to improved microbial cultivation techniques, microbial (meta-) genomic analysis and novel sensitive analytical tools for structural elucidation. Here we discuss how these technical advances, together with a better understanding of microbial and chemical ecology, will inevitably translate into an increase in the discovery and development of novel drugs from marine microbial sources in the future.


Fems Microbiology Reviews | 2013

The seaweed holobiont: understanding seaweed–bacteria interactions

Suhelen Egan; Tilmann Harder; Catherine Burke; Peter D. Steinberg; Staffan Kjelleberg; Torsten Thomas

Seaweeds (macroalgae) form a diverse and ubiquitous group of photosynthetic organisms that play an essential role in aquatic ecosystems. These ecosystem engineers contribute significantly to global primary production and are the major habitat formers on rocky shores in temperate waters, providing food and shelter for aquatic life. Like other eukaryotic organisms, macroalgae harbor a rich diversity of associated microorganisms with functions related to host health and defense. In particular, epiphytic bacterial communities have been reported as essential for normal morphological development of the algal host, and bacteria with antifouling properties are thought to protect chemically undefended macroalgae from detrimental, secondary colonization by other microscopic and macroscopic epibiota. This tight relationship suggests that macroalgae and epiphytic bacteria interact as a unified functional entity or holobiont, analogous to the previously suggested relationship in corals. Moreover, given that the impact of diseases in marine ecosystems is apparently increasing, understanding the role of bacteria as saprophytes and pathogens in seaweed communities may have important implications for marine management strategies. This review reports on the recent advances in the understanding of macroalgal-bacterial interactions with reference to the diversity and functional role of epiphytic bacteria in maintaining algal health, highlighting the holobiont concept.


PLOS ONE | 2008

Marine Biofilm Bacteria Evade Eukaryotic Predation by Targeted Chemical Defense

Carsten Matz; Jeremy S. Webb; Peter J. Schupp; Shui Yen Phang; Anahit Penesyan; Suhelen Egan; Peter Steinberg; Staffan Kjelleberg

Many plants and animals are defended from predation or herbivory by inhibitory secondary metabolites, which in the marine environment are very common among sessile organisms. Among bacteria, where there is the greatest metabolic potential, little is known about chemical defenses against bacterivorous consumers. An emerging hypothesis is that sessile bacterial communities organized as biofilms serve as bacterial refuge from predation. By testing growth and survival of two common bacterivorous nanoflagellates, we find evidence that chemically mediated resistance against protozoan predators is common among biofilm populations in a diverse set of marine bacteria. Using bioassay-guided chemical and genetic analysis, we identified one of the most effective antiprotozoal compounds as violacein, an alkaloid that we demonstrate is produced predominately within biofilm cells. Nanomolar concentrations of violacein inhibit protozoan feeding by inducing a conserved eukaryotic cell death program. Such biofilm-specific chemical defenses could contribute to the successful persistence of biofilm bacteria in various environments and provide the ecological and evolutionary context for a number of eukaryote-targeting bacterial metabolites.


Current Opinion in Microbiology | 2008

Unlocking the diversity and biotechnological potential of marine surface associated microbial communities

Suhelen Egan; Torsten Thomas; Staffan Kjelleberg

Marine sessile eukaryotic hosts provide a unique surface for microbial colonisation. Chemically mediated interactions between the host and colonising microorganisms, interactions between microorganisms in the biofilm community and surface-specific physical and chemical conditions impact differently on the diversity and function of surface-associated microbial assemblages compared with those in planktonic systems. Understanding the diversity and ecology of surface-associated microbial communities will greatly contribute to the discovery of next-generation, bioactive compounds. On the basis of recent conceptual and technological advances insights into the microbiology of marine living surfaces are improving and novel bioactives, including those previously ascribed as host derived, are now revealed to be produced by members of the surface-associated microbial community.


Applied and Environmental Microbiology | 2004

Biofilm development and cell death in the marine bacterium Pseudoalteromonas tunicata.

Anne Mai-Prochnow; Flavia F. Evans; Doralyn Dalisay-Saludes; Sacha Stelzer; Suhelen Egan; Sally James; Jeremy S. Webb; Staffan Kjelleberg

ABSTRACT The newly described green-pigmented bacterium Pseudoalteromonas tunicata (D2) produces target-specific inhibitory compounds against bacteria, algae, fungi, and invertebrate larvae and is frequently found in association with living surfaces in the marine environment. As part of our studies on the ecology of P. tunicata and its interaction with marine surfaces, we examined the ability of P. tunicata to form biofilms under continuous culture conditions within the laboratory. P. tunicata biofilms exhibited a characteristic architecture consisting of differentiated microcolonies surrounded by water channels. Remarkably, we observed a repeatable pattern of cell death during biofilm development of P. tunicata, similar to that recently reported for biofilms of Pseudomonas aeruginosa (J. S. Webb et al., J. Bacteriol. 185:4585-4595, 2003). Killing and lysis occurred inside microcolonies, apparently resulting in the formation of voids within these structures. A subpopulation of viable cells was always observed within the regions of killing in the biofilm. Moreover, extensive killing in mature biofilms appeared to result in detachment of the biofilm from the substratum. A novel 190-kDa autotoxic protein produced by P. tunicata, designated AlpP, was found to be involved in this biofilm killing and detachment. A ΔalpP mutant derivative of P. tunicata was generated, and this mutant did not show cell death during biofilm development. We propose that AlpP-mediated cell death plays an important role in the multicellular biofilm development of P. tunicata and subsequent dispersal of surviving cells within the marine environment.


Infection and Immunity | 2008

LipL32 is an extracellular matrix-interacting protein of Leptospira spp. and Pseudoalteromonas tunicata

David E. Hoke; Suhelen Egan; Paul A. Cullen; Ben Adler

ABSTRACT LipL32 is the major outer membrane protein in pathogenic Leptospira. It is highly conserved throughout pathogenic species and is expressed in vivo during human infection. While these data suggest a role in pathogenesis, a function for LipL32 has not been defined. Outer membrane proteins of gram-negative bacteria are the first line of molecular interaction with the host, and many have been shown to bind host extracellular matrix (ECM). A search for leptospiral ECM-interacting proteins identified the major outer membrane protein, LipL32. To verify this finding, recombinant LipL32 was expressed in Escherichia coli and was found to bind Matrigel ECM and individual components of ECM, including laminin, collagen I, and collagen V. Likewise, an orthologous protein found in the genome of Pseudoalteromonas tunicata strain D2 was expressed and found to be functionally similar and immunologically cross-reactive. Lastly, binding activity was mapped to the C-terminal 72 amino acids. These studies show that LipL32 and an orthologous protein in P. tunicata are immunologically cross-reactive and function as ECM-interacting proteins via a conserved C-terminal region.


Journal of Bacteriology | 2008

Hydrogen Peroxide Linked to Lysine Oxidase Activity Facilitates Biofilm Differentiation and Dispersal in Several Gram-Negative Bacteria

Anne Mai-Prochnow; Patricia Lucas-Elío; Suhelen Egan; Torsten Thomas; Jeremy S. Webb; Antonio Sanchez-Amat; Staffan Kjelleberg

The marine bacterium Pseudoalteromonas tunicata produces an antibacterial and autolytic protein, AlpP, which causes death of a subpopulation of cells during biofilm formation and mediates differentiation, dispersal, and phenotypic variation among dispersal cells. The AlpP homologue (LodA) in the marine bacterium Marinomonas mediterranea was recently identified as a lysine oxidase which mediates cell death through the production of hydrogen peroxide. Here we show that AlpP in P. tunicata also acts as a lysine oxidase and that the hydrogen peroxide generated is responsible for cell death within microcolonies during biofilm development in both M. mediterranea and P. tunicata. LodA-mediated biofilm cell death is shown to be linked to the generation of phenotypic variation in growth and biofilm formation among M. mediterranea biofilm dispersal cells. Moreover, AlpP homologues also occur in several other gram-negative bacteria from diverse environments. Our results show that subpopulations of cells in microcolonies also die during biofilm formation in two of these organisms, Chromobacterium violaceum and Caulobacter crescentus. In all organisms, hydrogen peroxide was implicated in biofilm cell death, because it could be detected at the same time as the killing occurred, and the addition of catalase significantly reduced biofilm killing. In C. violaceum the AlpP-homologue was clearly linked to biofilm cell death events since an isogenic mutant (CVMUR1) does not undergo biofilm cell death. We propose that biofilm killing through hydrogen peroxide can be linked to AlpP homologue activity and plays an important role in dispersal and colonization across a range of gram-negative bacteria.

Collaboration


Dive into the Suhelen Egan's collaboration.

Top Co-Authors

Avatar

Staffan Kjelleberg

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Torsten Thomas

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Carola Holmström

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Melissa Gardiner

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Sally James

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Peter D. Steinberg

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Jeremy S. Webb

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

Anne Mai-Prochnow

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge