Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Salome Nadja Seiffert is active.

Publication


Featured researches published by Salome Nadja Seiffert.


Drug Resistance Updates | 2013

Extended-spectrum cephalosporin-resistant gram-negative organisms in livestock: An emerging problem for human health?

Salome Nadja Seiffert; Vincent Perreten; Andrea Endimiani

Escherichia coli, Salmonella spp. and Acinetobacter spp. are important human pathogens. Serious infections due to these organisms are usually treated with extended-spectrum cephalosporins (ESCs). However, in the past two decades we have faced a rapid increasing of infections and colonization caused by ESC-resistant (ESC-R) isolates due to production of extended-spectrum-β-lactamases (ESBLs), plasmid-mediated AmpCs (pAmpCs) and/or carbapenemase enzymes. This situation limits drastically our therapeutic armamentarium and puts under peril the human health. Animals are considered as potential reservoirs of multidrug-resistant (MDR) Gram-negative organisms. The massive and indiscriminate use of antibiotics in veterinary medicine has contributed to the selection of ESC-R E. coli, ESC-R Salmonella spp. and, to less extent, MDR Acinetobacter spp. among animals, food, and environment. This complex scenario is responsible for the expansion of these MDR organisms which may have life-threatening clinical significance. Nowadays, the prevalence of food-producing animals carrying ESC-R E. coli and ESC-R Salmonella (especially those producing CTX-M-type ESBLs and the CMY-2 pAmpC) has reached worryingly high values. More recently, the appearance of carbapenem-resistant isolates (i.e., VIM-1-producing Enterobacteriaceae and NDM-1 or OXA-23-producing Acinetobacter spp.) in livestock has even drawn greater concerns. In this review, we describe the aspects related to the spread of the above MDR organisms among pigs, cattle, and poultry, focusing on epidemiology, molecular mechanisms of resistance, impact of antibiotic use, and strategies to contain the overall problem. The link and the impact of ESC-R organisms of livestock origin for the human scenario are also discussed.


PLOS ONE | 2015

Differentiation of IncL and IncM Plasmids Associated with the Spread of Clinically Relevant Antimicrobial Resistance.

Alessandra Carattoli; Salome Nadja Seiffert; Sybille Schwendener; Vincent Perreten; Andrea Endimiani

Introduction bla OXA-48, bla NDM-1 and bla CTX-M-3 are clinically relevant resistance genes, frequently associated with the broad-host range plasmids of the IncL/M group. The L and M plasmids belong to two compatible groups, which were incorrectly classified together by molecular methods. In order to understand their evolution, we fully sequenced four IncL/M plasmids, including the reference plasmids R471 and R69, the recently described bla OXA-48-carrying plasmid pKPN-El.Nr7 from a Klebsiella pneumoniae isolated in Bern (Switzerland), and the bla SHV-5 carrying plasmid p202c from a Salmonella enterica from Tirana (Albania). Methods Sequencing was performed using 454 Junior Genome Sequencer (Roche). Annotation was performed using Sequin and Artemis software. Plasmid sequences were compared with 13 fully sequenced plasmids belonging to the IncL/M group available in GenBank. Results Comparative analysis of plasmid genomes revealed two distinct genetic lineages, each containing one of the R471 (IncL) and R69 (IncM) reference plasmids. Conjugation experiments demonstrated that plasmids representative of the IncL and IncM groups were compatible with each other. The IncL group is constituted by the bla OXA-48-carrying plasmids and R471. The IncM group contains two sub-types of plasmids named IncM1 and IncM2 that are each incompatible. Conclusion This work re-defines the structure of the IncL and IncM families and ascribes a definitive designation to the fully sequenced IncL/M plasmids available in GenBank.


International Journal of Antimicrobial Agents | 2014

Emergence of Klebsiella pneumoniae co-producing NDM-1, OXA-48, CTX-M-15, CMY-16, QnrA and ArmA in Switzerland

Salome Nadja Seiffert; Jonas Marschall; Vincent Perreten; Alessandra Carattoli; Hansjakob Furrer; Andrea Endimiani

Extensively drug-resistant (XDR) Klebsiella pneumoniae isolates usually carry a single carbapenemase (e.g. KPC, NDM, OXA-48-like). Here we describe an XDR K. pneumoniae of sequence type 101 that was detected in the screening rectal swab of a patient transferred from the intensive care unit of a hospital located in Belgrade (Serbia) to Bern University Hospital (Switzerland). The isolate was resistant to all antibiotics with the exception of colistin [minimum inhibitory concentration] (MIC ≤ 0.125 μg/mL), tigecycline (MIC = 0.5 μg/mL) and fosfomycin (MIC = 2 μg/mL). The isolate co-possessed class B (NDM-1) and class D (OXA-48) carbapenemases, class A extended-spectrum β-lactamase (CTX-M-15), class C cephalosporinase (CMY-16), ArmA 16S rRNA methyltransferase, substitutions in GyrA and ParC, loss of OmpK35 porin, as well as other genes conferring resistance to quinolones (qnrA), tetracyclines [tet(A)], sulfonamides (sul1, sul2), trimethoprim (dfrA12, dfrA14), rifampicin (arr-1), chloramphenicol (cmlA1, floR) and streptomycin (aadA1). The patient was placed under contact isolation precautions preventing the spread of this nearly untreatable pathogen.


Antimicrobial Agents and Chemotherapy | 2014

OXA-48 Carbapenemase-Producing Salmonella enterica Serovar Kentucky Isolate of Sequence Type 198 in a Patient Transferred from Libya to Switzerland

Salome Nadja Seiffert; Vincent Perreten; Sönke Johannes; Sara Christine Droz; Thomas Bodmer; Andrea Endimiani

ABSTRACT Here, we report a case of OXA-48-producing Salmonella enterica serovar Kentucky of sequence type 198 (ST198) from perianal screening cultures of a patient transferred from Libya to Switzerland. The blaOXA-48 gene was carried by Tn1999.2 and located on an ∼60-kb IncL/M plasmid. This Salmonella strain also possessed the blaVEB-8, aac(6)-Ib, tet(A), sul1, and mphA resistance genes and substitutions in GyrA (Ser83Phe and Asp87Asn) and ParC (Ser80Ile). This finding emphasizes that prompt screening strategies are essential to prevent the dissemination of carbapenemase producers imported from countries where they are endemic.


International Journal of Antimicrobial Agents | 2013

Characterisation and clinical features of Enterobacter cloacae bloodstream infections occurring at a tertiary care university hospital in Switzerland: is cefepime adequate therapy?

Parham Sendi; Salome Nadja Seiffert; Sara Christine Droz; Vincent Perreten; Andrea M. Hujer; Robert A. Bonomo; Kathrin Mühlemann; Andrea Endimiani

Despite many years of clinical experience with cefepime, data regarding the outcome of patients suffering from bloodstream infections (BSIs) due to Enterobacter cloacae (Ecl) are scarce. To address the gap in our knowledge, 57 Ecl responsible for 51 BSIs were analysed implementing phenotypic and molecular methods (microarrays, PCRs for bla and other genes, rep-PCR to analyse clonality). Only two E. cloacae (3.5%) were ESBL-producers, whereas 34 (59.6%) and 18 (31.6%) possessed inducible (Ind-Ecl) or derepressed (Der-Ecl) AmpC enzymes, respectively. All isolates were susceptible to imipenem, meropenem, gentamicin and ciprofloxacin. Der-Ecl were highly resistant to ceftazidime and piperacillin/tazobactam (both MIC₉₀≥256 μg/mL), whereas cefepime retained its activity (MIC₉₀ of 3 μg/mL). rep-PCR indicated that the isolates were sporadic, but Ecl collected from the same patients were indistinguishable. In particular, three BSIs initially due to Ind-Ecl evolved (under ceftriaxone or piperacillin/tazobactam treatment) into Der-Ecl because of mutations or a deletion in ampD or insertion of IS4321 in the promoter. These last two mechanisms have never been described in Ecl. Mortality was higher for BSIs due to Der-Ecl than Ind-Ecl (3.8% vs. 29.4%; P=0.028) and was associated with the Charlson co-morbidity index (P=0.046). Using the following directed treatments, patients with BSI showed a favourable treatment outcome: cefepime (16/18; 88.9%); carbapenems (12/13; 92.3%); ceftriaxone (4/7; 57.1%); piperacillin/tazobactam (5/7; 71.4%); and ciprofloxacin (6/6; 100%). Cefepime represents a safe therapeutic option and an alternative to carbapenems to treat BSIs due to Ecl when the prevalence of ESBL-producers is low.


Antimicrobial Agents and Chemotherapy | 2013

High Prevalence of Extended-Spectrum Cephalosporin-Resistant Enterobacteriaceae in Poultry Meat in Switzerland: Emergence of CMY-2- and VEB-6-possessing Proteus mirabilis

Salome Nadja Seiffert; Regula Tinguely; Agnese Lupo; Catherine Neuwirth; Vincent Perreten; Andrea Endimiani

The spread of extended-spectrum-cephalosporin-resistant (ESC-R) Escherichia coli in poultry meat is a serious concern ([1][1][–][2][3][3]). However, data regarding this problem in Switzerland are lacking. Moreover, the role played in this matter by other Enterobacteriaceae remains undetermined.


Journal of Food Protection | 2014

Antibiotic resistance and phylogenetic characterization of Acinetobacter baumannii strains isolated from commercial raw meat in Switzerland.

Agnese Lupo; Debora Vogt; Salome Nadja Seiffert; Andrea Endimiani; Vincent Perreten

The spread of antibiotic-resistant bacteria through food has become a major public health concern because some important human pathogens may be transferred via the food chain. Acinetobacter baumannii is one of the most life-threatening gram-negative pathogens; multidrug-resistant (MDR) clones of A. baumannii are spreading worldwide, causing outbreaks in hospitals. However, the role of raw meat as a reservoir of A. baumannii remains unexplored. In this study, we describe for the first time the antibiotic susceptibility and fingerprint (repetitive extragenic palindromic PCR [rep-PCR] profile and sequence types [STs]) of A. baumannii strains found in raw meat retailed in Switzerland. Our results indicate that A. baumannii was present in 62 (25.0%) of 248 (CI 95%: 19.7 to 30.9%) meat samples analyzed between November 2012 and May 2013, with those derived from poultry being the most contaminated (48.0% [CI 95%: 37.8 to 58.3%]). Thirty-nine strains were further tested for antibiotic susceptibility and clonality. Strains were frequently not susceptible (intermediate and/or resistant) to third- and fourth-generation cephalosporins for human use (i.e., ceftriaxone [65%], cefotaxime [32%], ceftazidime [5%], and cefepime [2.5%]). Resistance to piperacillin-tazobactam, ciprofloxacin, colistin, and tetracycline was sporadically observed (2.5, 2.5, 5, and 5%, respectively), whereas resistance to carbapenems was not found. The strains were genetically very diverse from each other and belonged to 29 different STs, forming 12 singletons and 6 clonal complexes (CCs), of which 3 were new (CC277, CC360, and CC347). RepPCR analysis further distinguished some strains of the same ST. Moreover, some A. baumannii strains from meat belonged to the clonal complexes CC32 and CC79, similar to the MDR isolates responsible for human infections. In conclusion, our findings suggest that raw meat represents a reservoir of MDR A. baumannii and may serve as a vector for the spread of these pathogens into both community and hospital settings.


Antimicrobial Agents and Chemotherapy | 2013

Emergence of Extensively Drug-Resistant Haemophilus parainfluenzae in Switzerland

Regula Tinguely; Salome Nadja Seiffert; Hansjakob Furrer; Vincent Perreten; Sara Christine Droz; Andrea Endimiani

ABSTRACT Two homosexual men were colonized in the urethra with Haemophilus parainfluenzae nonsusceptible to ampicillin (MIC, 8 μg/ml), amoxicillin-clavulanate (MIC, 4 μg/ml), cefotaxime (MIC, 1.5 μg/ml), cefepime (MIC, 3 μg/ml), meropenem (MIC, 0.5 μg/ml), cefuroxime, azithromycin, ciprofloxacin, tetracycline, and chloramphenicol (all MICs, ≥32 μg/ml). Repetitive extragenic palindromic PCR (rep-PCR) showed that the strains were indistinguishable. The isolates had amino acid substitutions in PBP3, L4, GyrA, and ParC and possessed Mef(A), Tet(M), and CatS resistance mechanisms. This is the first report of extensively drug-resistant (XDR) H. parainfluenzae.


Frontiers in Microbiology | 2017

Plasmids carrying blaCMY -2/4 in Escherichia coli from poultry, poultry meat, and humans belong to a novel IncK subgroup designated IncK2

Salome Nadja Seiffert; Alessandra Carattoli; Sybille Schwendener; Alexandra Collaud; Andrea Endimiani; Vincent Perreten

The blaCMY -2/4-carrying IncB/O/K-like plasmids of seven Escherichia coli strains from poultry, poultry meat and human urine samples were examined using comparative analysis of whole plasmid sequences. The incompatibility group was determined by analysis of the incRNAI region and conjugation assays with strains containing the IncK and IncB/O reference plasmids. Strains were additionally characterized using MLST and MIC determination. The complete DNA sequences of all plasmids showed an average nucleotide identity of 91.3%. Plasmids were detected in E. coli sequence type (ST) 131, ST38, ST420, ST1431, ST1564 and belonged to a new plasmid variant (IncK2) within the IncK and IncB/O groups. Notably, one E. coli from poultry meat and one from human contained the same plasmid. The presence of a common recently recognized IncK2 plasmid in diverse E. coli from human urine isolates and poultry meat production suggests that the IncK2 plasmids originated from a common progenitor and have the capability to spread to genetically diverse E. coli in different reservoirs. This discovery is alarming and stresses the need of rapidly introducing strict hygiene measures throughout the food chain, limiting the spread of such plasmids in the human settings.


Antimicrobial Agents and Chemotherapy | 2014

High Prevalence of Extended-Spectrum β-Lactamase, Plasmid-Mediated AmpC, and Carbapenemase Genes in Pet Food

Salome Nadja Seiffert; Alessandra Carattoli; Regula Tinguely; Agnese Lupo; Vincent Perreten; Andrea Endimiani

ABSTRACT We evaluated the pet food contained in 30 packages as a potential origin of extended-spectrum cephalosporin-resistant Gram-negative organisms and β-lactamase genes (bla). Live bacteria were not detected by selective culture. However, PCR investigations on food DNA extracts indicated that samples harbored the blaCTX-M-15 (53.3%), blaCMY-4 (20%), and blaVEB-4-like (6.7%) genes. Particularly worrisome was the presence of blaOXA-48-like carbapenemases (13.3%). The original pet food ingredients and/or the production processes were highly contaminated with bacteria carrying clinically relevant acquired bla genes.

Collaboration


Dive into the Salome Nadja Seiffert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessandra Carattoli

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Parham Sendi

University Hospital of Bern

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge