Salvatore Camiolo
University of Sassari
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Salvatore Camiolo.
Genetics | 2012
Salvatore Camiolo; Lorenzo Farina; Andrea Porceddu
The codon composition of coding sequences plays an important role in the regulation of gene expression. Herein, we report systematic differences in the usage of synonymous codons among Arabidopsis thaliana genes that are expressed specifically in distinct tissues. Although we observed that both regionally and transcriptionally associated mutational biases were associated significantly with codon bias, they could not explain the observed differences fully. Similarly, given that transcript abundances did not account for the differences in codon usage, it is unlikely that selection for translational efficiency can account exclusively for the observed codon bias. Thus, we considered the possible evolution of codon bias as an adaptive response to the different abundances of tRNAs in different tissues. Our analysis demonstrated that in some cases, codon usage in genes that were expressed in a broad range of tissues was influenced primarily by the tissue in which the gene was expressed maximally. On the basis of this finding we propose that genes that are expressed in certain tissues might show a tissue-specific compositional signature in relation to codon usage. These findings might have implications for the design of transgenes in relation to optimizing their expression.
PLOS ONE | 2009
Salvatore Camiolo; Domenico Rau; Andrea Porceddu
Recently features of gene expression profiles have been associated with structural parameters of gene sequences in organisms representing a diverse set of taxa. The emerging picture indicates that natural selection, mediated by gene expression profiles, has a significant role in determining genic structures. However the current situation is less clear in plants as the available data indicates that the effect of natural selection mediated by gene expression is very weak. Moreover, the direction of the patterns in plants appears to contradict those observed in animal genomes. In the present work we analized expression data for >18000 Arabidopsis genes retrieved from public datasets obtained with different technologies (MPSS and high density chip arrays) and compared them with gene parameters. Our results show that the impact of natural selection mediated by expression on genes sequences is significant and distinguishable from the effects of regional mutational biases. In addition, we provide evidence that the level and the breadth of gene expression are related in opposite ways to many structural parameters of gene sequences. Higher levels of expression abundance are associated with smaller transcripts, consistent with the need to reduce costs of both transcription and translation. Expression breadth, however, shows a contrasting pattern, i.e. longer genes have higher breadth of expression, possibly to ensure those structural features associated with gene plasticity. Based on these results, we propose that the specific balance between these two selective forces play a significant role in shaping the structure of Arabidopsis genes.
Biodata Mining | 2013
Salvatore Camiolo; Andrea Porceddu
BackgroundGeneral Feature Format (GFF) files are used to store genome features such as genes, exons, introns, primary transcripts etc. Although many software packages (i.e. ab initio gene prediction programs) can annotate features by using such a standard, a small number of tools have been developed to extract the corresponding sequence information from the original genome. However the present tools do not execute either a quality control or a customizable filter of the annotated features is available.Findingsgff2sequence is a program that extracts nucleotide/protein sequences from a genomic multifasta by using the information provided by a general feature format file. While a graphical user interface makes this software very easy to use, a C++ algorithm allows high performance together with low hardware demand. The software also allows the extraction of the genic portions such as the untranslated and the coding sequences. Moreover a highly customizable quality control pipeline can be used to deal with anomalous splicing sites, incorrect open reading frames and not canonical characters within the retrieved sequences.Conclusionsgff2sequence is a user friendly program that allows the generation of highly customizable sequence datasets by processing a general feature format file. The presence of a wide range of quality filters makes this tool also suitable for refining the ab initio gene predictions.
Scientific Reports | 2016
Pietro Ariani; Alice Regaiolo; Arianna Lovato; Alejandro Giorgetti; Andrea Porceddu; Salvatore Camiolo; Darren Wong; Simone Diego Castellarin; Elodie Vandelle; Annalisa Polverari
The Arabidopsis Tóxicos en Levadura (ATL) protein family is a class of E3 ubiquitin ligases with a characteristic RING-H2 Zn-finger structure that mediates diverse physiological processes and stress responses in plants. We carried out a genome-wide survey of grapevine (Vitis vinifera L.) ATL genes and retrieved 96 sequences containing the canonical ATL RING-H2 domain. We analysed their genomic organisation, gene structure and evolution, protein domains and phylogenetic relationships. Clustering revealed several clades, as already reported in Arabidopsis thaliana and rice (Oryza sativa), with an expanded subgroup of grapevine-specific genes. Most of the grapevine ATL genes lacked introns and were scattered among the 19 chromosomes, with a high level of duplication retention. Expression profiling revealed that some ATL genes are expressed specifically during early or late development and may participate in the juvenile to mature plant transition, whereas others may play a role in pathogen and/or abiotic stress responses, making them key candidates for further functional analysis. Our data offer the first genome-wide overview and annotation of the grapevine ATL family, and provide a basis for investigating the roles of specific family members in grapevine physiology and stress responses, as well as potential biotechnological applications.
PLOS ONE | 2011
Andrea Porceddu; Salvatore Camiolo
Genomic DNA sequences display compositional heterogeneity on many scales. In this paper we analyzed tendencies and anomalies in the occurence of mono, di and trinucleotides in structural regions of plant genes. Representation of these trends as a function of position along genic sequences highlighted compositional features peculiar of either monocots or eudicots that were remarkably uniform within these two evolutionary clades. The most evident of these features appeared in the form of gradient of base content along the direction of transcription. The robustness of such a representation was validated in sequences sub-datasets generated considering structural and compositional features such as total length of cds, overall GC content and genic orientation in the genome. Piecewise regression analyses indicated that the gradients could be conveniently approximated to a two segmented model where a first region featuring a steep slope is followed by a second segment fitting a milder variation. In general, monocots species showed steeper segments than eudicots. The guanine gradient was the most distinctive feature between the two evolutionary clades, being moderately increasing in eudicots and firmly decreasing in monocots. Single gene investigation revealed that a high proportion of genes show compositional trends compatible with a segmented model suggesting that these features are essential attributes of gene organization. Dinucleotide and trinucleotide biases were referred to expectation based on a random union of the component elements. The average bias at dinucleotide level identified a significant undererpresentation of some dinucleotide and the overrepresention of others. The bias at trinucleotide level was on average low. Finally, the analysis of bryophyte coding sequences showed mononucleotide, dinucleotide and trinucleotide compositional trends resembling those of higher plants. This finding suggested that the emergenge of compositional bias is an ancient event in evolution which was already present at the time of land conquest by green plants.
Genome Biology and Evolution | 2013
Andrea Porceddu; Sara Zenoni; Salvatore Camiolo
Little is known about the natural selection of synonymous codons within the coding sequences of plant genes. We analyzed the distribution of synonymous codons within plant coding sequences and found that preferred codons tend to encode the more conserved and functionally important residues of plant proteins. This was consistent among several synonymous codon families and applied to genes with different expression profiles and functions. Most of the randomly chosen alternative sets of codons scored weaker associations than the actual sets of preferred codons, suggesting that codon position within plant genes and codon usage bias have coevolved to maximize translational accuracy. All these findings are consistent with the mistranslation-induced protein misfolding theory, which predicts the natural selection of highly preferred codons more frequently at sites where translation errors could compromise protein folding or functionality. Our results will provide an important insight in future studies of protein folding, molecular evolution, and transgene design for optimal expression.
BMC Research Notes | 2014
Salvatore Camiolo; Sara Melito; Giampiera Milia; Andrea Porceddu
BackgroundThe majority of amino acid residues are encoded by more than one codon, and a bias in the usage of such synonymous codons has been repeatedly demonstrated. One assumption is that this phenomenon has evolved to improve the efficiency of translation by reducing the time required for the recruitment of isoacceptors. The most abundant tRNA species are preferred at sites on the protein which are key for its functionality, a behavior which has been termed “translational accuracy”. Although observed in many species, as yet no public domain software has been made available for its quantification.FindingsWe present here Seforta (Selection for Translational Accuracy), a program designed to quantify translational accuracy. It searches for synonymous codon usage bias in both conserved and non-conserved regions of coding sequences and computes a cumulative odds ratio and a Z-score. The specification of a set of preferred codons is desirable, but the program can also generate these. Finally, a randomization protocol calculates the probability that preferred codon combinations could have arisen by chance.ConclusionsSeforta is the first public domain program able to quantify translational accuracy. It comes with a simple graphical user interface and can be readily installed and adjusted to the users requirements.
Microbiology | 2018
Sara Landolfo; Giuseppe Ianiri; Salvatore Camiolo; Andrea Porceddu; Giuliana Mulas; Rossella Chessa; Giacomo Zara; Ilaria Maria Mannazzu
A molecular approach was applied to the study of the carotenoid biosynthetic pathway of Rhodotorula mucilaginosa. At first, functional annotation of the genome of R. mucilaginosa C2.5t1 was carried out and gene ontology categories were assigned to 4033 predicted proteins. Then, a set of genes involved in different steps of carotenogenesis was identified and those coding for phytoene desaturase, phytoene synthase/lycopene cyclase and carotenoid dioxygenase (CAR genes) proved to be clustered within a region of ~10 kb. Quantitative PCR of the genes involved in carotenoid biosynthesis showed that genes coding for 3-hydroxy-3-methylglutharyl-CoA reductase and mevalonate kinase are induced during exponential phase while no clear trend of induction was observed for phytoene synthase/lycopene cyclase and phytoene dehydrogenase encoding genes. Thus, in R. mucilaginosa the induction of genes involved in the early steps of carotenoid biosynthesis is transient and accompanies the onset of carotenoid production, while that of CAR genes does not correlate with the amount of carotenoids produced. The transcript levels of genes coding for carotenoid dioxygenase, superoxide dismutase and catalase A increased during the accumulation of carotenoids, thus suggesting the activation of a mechanism aimed at the protection of cell structures from oxidative stress during carotenoid biosynthesis. The data presented herein, besides being suitable for the elucidation of the mechanisms that underlie carotenoid biosynthesis, will contribute to boosting the biotechnological potential of this yeast by improving the outcome of further research efforts aimed at also exploring other features of interest.
Journal of Visualized Experiments | 2017
Pietro Ariani; Elodie Vandelle; Darren Wong; Alejandro Giorgetti; Andrea Porceddu; Salvatore Camiolo; Annalisa Polverari
Classification and nomenclature of genes in a family can significantly contribute to the description of the diversity of encoded proteins and to the prediction of family functions based on several features, such as the presence of sequence motifs or of particular sites for post-translational modification and the expression profile of family members in different conditions. This work describes a detailed protocol for gene family characterization. Here, the procedure is applied to the characterization of the Arabidopsis Tóxicos in Levadura (ATL) E3 ubiquitin ligase family in grapevine. The methods include the genome-wide identification of family members, the characterization of gene localization, structure, and duplication, the analysis of conserved protein motifs, the prediction of protein localization and phosphorylation sites as well as gene expression profiling across the family in different datasets. Such procedure, which could be extended to further analyses depending on experimental purposes, could be applied to any gene family in any plant species for which genomic data are available, and it provides valuable information to identify interesting candidates for functional studies, giving insights into the molecular mechanisms of plant adaptation to their environment.
Frontiers in Plant Science | 2017
Luca Mercenaro; Giovanni Nieddu; Andrea Porceddu; Mario Pezzotti; Salvatore Camiolo
The genetic diversity among grapevine (Vitis vinifera L.) cultivars that underlies differences in agronomic performance and wine quality reflects the accumulation of single nucleotide polymorphisms (SNPs) and small indels as well as larger genomic variations. A combination of high throughput sequencing and mapping against the grapevine reference genome allows the creation of comprehensive sequence variation maps. We used next generation sequencing and bioinformatics to generate an inventory of SNPs and small indels in four widely cultivated Sardinian grape cultivars (Bovale sardo, Cannonau, Carignano and Vermentino). More than 3,200,000 SNPs were identified with high statistical confidence. Some of the SNPs caused the appearance of premature stop codons and thus identified putative pseudogenes. The analysis of SNP distribution along chromosomes led to the identification of large genomic regions with uninterrupted series of homozygous SNPs. We used a digital comparative genomic hybridization approach to identify 6526 genomic regions with significant differences in copy number among the four cultivars compared to the reference sequence, including 81 regions shared between all four cultivars and 4953 specific to single cultivars (representing 1.2 and 75.9% of total copy number variation, respectively). Reads mapping at a distance that was not compatible with the insert size were used to identify a dataset of putative large deletions with cultivar Cannonau revealing the highest number. The analysis of genes mapping to these regions provided a list of candidates that may explain some of the phenotypic differences among the Bovale sardo, Cannonau, Carignano and Vermentino cultivars.